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Abstract

In this paper, we investigate the absolute stability of a certain Lurie system of the form (2.1) where A’s
are matrices and C and q are vectors having appropriate dimensions. The nonlinearities of (2.1) which
are fi,i = 1,2.., are continuous, and they are our main focus of investigation in this study, the
degenerate system that gives unique equilibrium state (xt,y* )t = 0 help us to take the derivative of the
nonlinearities of (2.1) which resulted to (2.2), and (2.3) described the boundary layer of (2.1).

The assumption C; A;*q; > 0 holds, together with some notations that were introduced with subsystem
(2.2) (2.3) enable us to introduce the Lyapunov matrix-valued function which is the main tool for this
study, that enable us to prove the main results, (2.4) gives our matrix-valued function, and scalar
functions were introduced on (2.4) that lead us to (2.5). we introduced estimates which satisfy the
estimates of the matrix-valued functions that gives (2.6), one of the conditions for Lyapunov matrix-
valued function to be stable is that the derivative of the given function must be negative — definite at the
given interval, and the function must be positive — definite, this was shown under the statement of the
main results, where we established sufficient conditions that guarantees the absolute stability of the
equation of the form (2.1).
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1. Introduction
Singularly-perturbed systems are known to be rather widely used in the engineering and technology as
models of real processes. (see e.g. surveys by Vasilieva and Butuzov[15]; Kokotovic O’ Malley, and
Sannuti [8]; Grujic[2, 3]; and some others). Stability properties were studied by Klimushev and
Krasovskii[7,], Hoppensteadt [4,5] Siljak[14] Zien[18].

Impressive results have been obtained on the stability of control systems using frequency domain
ideas over the year outstanding examples of such works can be found in the Articles of Kalman [6],
Popov[12] and Yacobovich [17] arising in their quests to solve Lurie’s problems[9] in automatic

controls. More expository results can be found in [1, 10, 11,13, and 16]

2. Preliminaries

In this paper we consider the autonomous singularly perturbed system of Lurie type
% = Apx +Apy +qifi(oy), 0 =Cl; + ChLy;
M% = Apx + Ay + q2f2(03), 0, = C3; +Chhy,— 2.1
Where xe N, € R™, yeN,, € R™ e (0,1]is a small parameter, the matrices A(.) and the vectors

c(.),q(.) having appropriate dimensions. The nonlinearities f;,i = 1,2; are continuous, f;(0) = 0 and
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in the Lurie sectors [0,k;], k;e(0,+) satisfy the conditions f;(g;)/0;¢ (0, k;],
i =1,2; Vo€ (—0o0,+00).
In this paper, we study only those nonlinearities f; for which the state (xT,y")T = 0 is the unique

equilibrium state of the degenerate system.

% = Apx + q,f1(07); of =C{1x — 2.2

and of the system, describing the boundary layer,
M% = A2y + q212(03); 05 = Chy > 2.3
This assumption holds if C; A; q; > 0.

The following notations are introduced;

f(x,0) = Aj1x + q1f1(07);

f (2 y) = Ay + qilfi(o1) — fi(aD)];

9(0,y) = Ay + q2£2(03);

g (x,y) = Apix + q;[f2(02) — f>(03)]

Then the system (2.1) takes the form

dx

= =f(x0)+f(x,y);

dat
d *
u==g@0,y) +9g'xy)
Together with system (2.1) and subsystems (2.2)(2.3) we shall consider the matrix-valued function

v11(x) v1,(x,y, 1)

S Vip = Vg = (2.4
UZI(xIYJM) Uzz(y"u ) 12 21 ( )

uCy,0 = (

where
vy, = xTBix; vy, = uyTB,y; vy, = ux'Byy; where Byand B, are symmetric, positive-definite

matrices; B is a constant matrix.
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We introduces scalar function on (2.4) to obtained v(x,y,u) = nT*(x,y, u)n — (2.5). where 7 =
(M1 7m2); M €R*+; ;> 0,0 = 1,2
we assume that the elements of the matrix-valued function (2.4) satisfy the following estimates

V11 (%) 2 A4 (B Ix||* V xe Ny, = {x:x€ Ny; x # 0};

V2 (0, 1) Z pdm (BIIYII? ¥ (v, u)€ Nyy X m; - (2.6)

vio(6 30 1) = —pd, 2By BDIXI IV Gy, 1€ Ny X Ny, X, M

where 1,,(B;) are the minimal eigenvalues of the matrices B;,i = 1,2; /1:,{2(83 BT) is the norm of the
matrix (B; B3); Am(Bs B3) is the maximal eigenvalue of the matrix Bz Bf; N, = {y:yeN,;y #
0}; M = (0,1]. The equation (2.5) have the estimate as follows

v(x,y,1) = UTHTAHU v(x,y, w)eN, x Ny, xM Where U™ = (||x|| llyll); H = diag (n1 n2);

Am(B)  —uA2(By BT;)

A(p) = v
—pA,, % (B3 BY) 1Am(By)

For the derivatives of the elements of the matrix-valued function (2.4) along the solutions of the
system (2.1) we have the following estimates

(@)-(Vx v11)7f (%, 0) < Py lIx||* ¥ x€Ny,;

(b).(Vx v1)7f*(x, ) < Pyyllx||? + 2P113/2||x|| Iyll Vv (x,3,)€ Nyy X Ny,
(€).(Vy v22) T4 (0,y) < uPou llyll? V(y, m)eNy, x M

(A).(V, v22)Tg" (x,3) < uPaallyll? + BN Y]l ¥ Gey, )€ Nyy X Ny, X M

1
(€). (Vz v12)TF (6, 0) < uP, Il VIl (v, )€ Ny X Ny X M;

1
(f). (Vx v1)Tf*(x,y) < MP17/2||x|| VIl + uPigllyll® ¥ G, y, 1€ Nyy X Nyg X M = (2.7)
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1
(g)(vy le)Tg(OIY) < ‘UPZS/ZHX'” ”y” v (xlyr.u)e Nxo X Nyo X M;

(h).(Vy v12)Tg" (6, 3) < uPsllxl2 + uPy2Ilxll Iyl €Ny x N, x M

Where P;4, P15, P,1, P5,, Pig P,e are the maximal eigenvalues of the matrices
By Ayy + Al By + B1q: Ky €Ty + (q1 K7 C{1)7 By,

By Az, + A}, By + B2q2K;5C3, + (92K;5C3,)" By,

B2q2K;C7, + (q2K;3C3,)" By,

AT, B3 + (q:1K{ C,)TB,

Az Ay, + B; qy K CT Respectively;

Where P 3/2, P23/2, P15/2' P17/2, st/z P27/2 Are the norms of the matrices.
B Aiz + B1q1 K7 CY,

By Ay + BZCIZKZ*CZTL
ATy B3 + (g1 K1 C1;)" B,
(q:K7C15)" Bs,
B3 Azz + B3q2K;C3,,
Bsq,K;C}, Respectively.

k; for o,q; Bjx > 0(0r 0,q; Bjy > 0 )

0 for o;q; Bjx < 0(or 0;q; Jy<0){,_123}

L

Denoting the upper bound of the derivative of the function (2-5)
By %vm(x, y, 1), we find the estimate. %vm(x, y, 1) < ufc (Wu,- (2.8)

011 012

Where c(u) = (021 o

)' 012 = 021,
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011 = N1 (P11 + Pi3) + 20t 1 Pog;
022 = N5 (P21 + Ppy) + 2unin, Pig;
1, 1,

Oy, = 2P1/2+ 2131/2+ P1/2+ P 2+P +P1/2
12 = N1 B37 TN203" Tl | UE 5~ T HE, 25 27

We introduce the quantities

_ ~N2(P21+P232) | _ —b+vb%-4ac .
L v M2 — —; Ko = min(uy, Kz)
N1P1g 2a

Yy, p2)’
Where a = 7% 13 <P152 + P172> ;

b= P>+ p2\[n2 P2 +n3p 02 + P>+ 12| -2 P ;
N272 15 17 n1 13 n; 23 n112 25 27 N1M2 F18 0115

C=In1 P3” + M2 +mna | Bs” + By N3 (P21 + Py3)014

Implies that g > 1, then we consider p €(0,1]

3. Statement of the main results
Proposition 3.1. The matrix c(u) is negative-definite for every u €(0,1] and for u— 0 if the following
conditions hold;
(@).o11 <0
(b).n1P1g >0
(€)n2(Pay + Py2) <0
(d).c<O0
Remark 3.1. If n,P;3 < 0 and the conditions (a),(b),(d) of proposition 3.1 are satisfied, then its

assertion remains valid for g = u,
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Theorem 3.1. Assume that the singularly perturbed Lurie system (2.1) is such that the matrix-valued
function (2.4) has been constructed for it, the elements of which satisfy the estimates (2.6) and for the
upper bound of the derivative of the function (2.5) the estimate (2.7) holds in this case ,if

(a). The matrix A is positive-definite;

(b). The matrix c(u) is negative-definite for every u €(0, uy) and for u— 0

Then the equilibrium state (x7,yT) = 0 of the system (2.1) is uniformly asymptotically stable for every
1 €(0,1p) and for u— 0 if, furthermore, N, X N,, = R™*™ Then the equilibrium state of the system
(2.1) is uniformly asymptotically stable on the whole for every u €(0, yy) and for p— 0.

Proof. On the basis of the matrix-valued function (2.4) with the aid of the vector neR2+,n > 0, we
construct the scalar function (2.5) under the estimates (2.6) one can show that v(x,y,u) =

UTHTAHU V(x,y, w)eN, x N, XM. Then from condition (a) of theorem 3.1 there follows that the

function v(x, y, u) is positive-definite. For the derivative %v(x, y, 1) the estimate (2.7) holds from here

and from condition (b) of the theorem 3.1 there follows that the derivative %v(x, y, 1) of the function

(2.5) is negative-definite for every u €(0, o) and for p— 0. As is known (see Grujic, Martynyuk and
Ribbens-Pavella [3] ), these conditions are sufficient for the uniform asymptotic stability of the
equilibrium state of the system (2.1). In this case N, X N,, = R™™ the function v(x,y,u) is radially
unbounded which, together with the other conditions, proves the second assertion of this theorem.
This is the absolute stability of the system (2.1), u, being an estimate of the upper bound of the
variation of the parameter p.

This complete the proof.

EXAMPLE: we consider a system of the form

d L
.Ud_jt/ = pAz1x + Ay + q2£2(03), 0, = C31x + C3,y in which
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—01 —12) N (0(.)1); Cllz(_od()l)‘

0.3 0.1) ;

The matrix-valued function (2.4) has the elements v;; = xT (0 1 03 ve

Vo (v, 1) = py” (g (2)) y;

0.01 O ) '

For which we have the estimates
v11(x) =0- 2||x||2; v (V1) 2 2#”}’”2;
v12(x,y, 1) = —0.01ullx]| Iyl

Ifn; = 1,i = 1,2 then the matrix A = ( 0.2 _0-0111)

—0.01u 2u

which is positive-definite for every ue (0,1).
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