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Abstract 

In this paper, we investigate the absolute stability of a certain Lurie system of the form (2.1) where A’s 

are matrices and C and q are vectors having appropriate dimensions. The nonlinearities of (2.1) which 

are 𝑓𝑖, 𝑖 =  1, 2. .,  are continuous, and they are our main focus of investigation in this study, the 

degenerate system that gives unique equilibrium state (𝑥𝑡,𝑦𝑡  )𝑡 = 0 help us to take the derivative of the 

nonlinearities of (2.1) which resulted to (2.2), and (2.3) described the boundary layer of (2.1). 

The assumption 𝐶𝑖𝑖𝑡  𝐴𝑖𝑖−1𝑞𝑖 > 0 holds, together with some notations that were introduced with subsystem 

(2.2) (2.3) enable us to introduce the Lyapunov matrix-valued function which is the main tool for this 

study, that enable us to prove the main results, (2.4) gives our matrix-valued function, and scalar 

functions were introduced on (2.4) that lead us to (2.5).  we introduced estimates which satisfy the 

estimates of the matrix-valued functions that gives (2.6), one of the conditions for Lyapunov matrix-

valued function to be stable is that the derivative of the given function must be negative – definite at the 

given interval, and the function must be positive – definite, this was shown under the statement of the 

main results, where we established sufficient conditions that guarantees the absolute stability of the 

equation of the form (2.1). 

 Keywords: Absolute Stability, Lurie System, Singularly Perturbed, Nonlinearities Liapunov Matrix-

Valued function. 
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1. Introduction 

Singularly-perturbed systems are known to be rather widely used in the engineering and technology as 

models of real processes. (see e.g. surveys by Vasilieva and Butuzov[15]; Kokotovic O’ Malley, and 

Sannuti [8]; Grujic[2, 3]; and some others). Stability properties were studied by  Klimushev and 

Krasovskii[7,], Hoppensteadt [4,5] Siljak[14] Zien[18]. 

 Impressive results have been obtained on the stability of control systems using frequency domain 

ideas over the year outstanding examples of such works can be found in the Articles of Kalman [6], 

Popov[12] and Yacobovich [17] arising in their quests to solve Lurie’s problems[9] in automatic 

controls. More expository results can be found in [1, 10, 11,13, and 16]      

                                

2. Preliminaries                     

 In this paper we consider the autonomous singularly perturbed system of Lurie type        

𝒅𝒙
𝒅𝒕

= 𝐴11𝑥 + 𝐴12𝑦 + 𝑞1𝑓1( 𝜎1),  𝜎1 = 𝐶11𝑇 + 𝐶12𝑇 𝑦;                                                                     

  𝜇 𝑑𝑦
𝑑𝑡

= 𝐴21𝑥 + 𝐴22𝑦 + 𝑞2𝑓2( 𝜎2),  𝜎2 = 𝐶21𝑇 + 𝐶22𝑇 𝑦,→ 2.1 

Where 𝑥𝜖 𝑁𝑥 ⊆  𝑅𝑛,𝑦𝜖𝑁𝑦  ⊆ 𝑅𝑚 𝜇 𝜖 (0,1] is a small parameter, the matrices 𝐴(. ) and the vectors 

𝑐(. ), 𝑞(. ) having appropriate  dimensions. The nonlinearities 𝑓𝑖 , 𝑖 = 1,2; are continuous, 𝑓𝑖(0) = 0 and 
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in the Lurie sectors [0,𝑘𝑖], 𝑘𝑖𝜖(0, +∞) satisfy the conditions 𝑓𝑖(𝜎𝑖)/𝜎𝑖𝜖 (0,𝑘𝑖], 

𝑖 = 1,2; ∀ 𝜎𝑖𝜖 (−∞, +∞). 

 In this paper, we study only those nonlinearities 𝑓𝑖  for which the state (𝑥𝑇 , 𝑦𝑇) 𝑇 = 0 is the unique 

equilibrium state of the degenerate system.                                         

 𝑑𝑥
𝑑𝑡

= 𝐴11𝑥 + 𝑞1𝑓1(𝜎10);  𝜎10 =𝐶11𝑇 𝑥 → 2.2  

 and of the system, describing the boundary layer,        

 μ𝑑𝑦
𝑑𝑡

= 𝐴22𝑦 + 𝑞2𝑓2(𝜎20);  𝜎20 = 𝐶22𝑇 𝑦 → 2.3. 

 This assumption holds if 𝐶𝑖𝑖𝑇 𝐴𝑖𝑖−1 𝑞𝑖 > 0.                   

 The following notations are introduced;                                                                                                             

𝑓(𝑥, 0) = 𝐴11𝑥 + 𝑞1𝑓1(𝜎10);                                                                                                             

𝑓∗(𝑥,𝑦) = 𝐴12𝑦 + 𝑞1[𝑓1(𝜎1) − 𝑓1(𝜎10)];                                                                                          

𝑔(0,𝑦) = 𝐴22𝑦 + 𝑞2𝑓2(𝜎20);                                                                                                               

𝑔∗(𝑥,𝑦) = 𝐴21𝑥 + 𝑞2[𝑓2(𝜎2) − 𝑓2(𝜎20)]                                                                                         

 Then the system (2.1) takes the form                                                                                                      

𝑑𝑥
𝑑𝑡

= 𝑓(𝑥, 0) + 𝑓∗(𝑥, 𝑦);                                                                                                                    

  𝜇 𝑑𝑦
𝑑𝑡

= 𝑔(𝑜,𝑦) + 𝑔∗(𝑥,𝑦)                                                                                                              

Together with system (2.1) and subsystems (2.2)(2.3) we shall consider the matrix-valued function                                                                                                                                               

𝑢(𝑥,𝑦, 𝜇) = � 𝑣11(𝑥) 𝑣12(𝑥,𝑦, 𝜇)
𝑣21(𝑥,𝑦, 𝜇) 𝑣22(𝑦, 𝜇 � ;  𝑣12 = 𝑣21 → (2.4)                                                         

where 

 𝑣11 = 𝑥𝑇𝐵1𝑥;   𝑣12 = 𝜇𝑦𝑇𝐵2𝑦;   𝑣12 = 𝜇𝑥𝑇𝐵3𝑦;  where 𝐵1𝑎𝑛𝑑 𝐵2 are symmetric, positive-definite 

matrices; 𝐵3 is a constant matrix. 
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 We introduces scalar function on (2.4) to obtained 𝑣(𝑥,𝑦, 𝜇) = 𝜂𝑇𝑢(𝑥,𝑦, 𝜇)𝞰 → (2.5). where 𝜂𝑇 =

(𝜂1 𝜂2);  𝞰 𝝐𝑹𝟐+; 𝞰𝒊 > 0, 𝑖 = 1,2      

 we assume that the elements of the matrix-valued function (2.4) satisfy the following estimates 

𝑣11(𝑥) ≥ 𝜆𝑚(𝐵1)‖𝑥‖2  ∀ 𝑥𝜖 𝑁𝑥0 = {𝑥: 𝑥𝜖 𝑁𝑥; 𝑥 ≠ 0};                                                                    

𝑣22(𝑦, 𝜇) ≥ 𝜇𝜆𝑚(𝐵2)‖𝑦‖2  ∀ (𝑦, 𝜇)𝜖 𝑁𝑦0 × 𝑚;→ (2.6)                                                                

𝑣12(𝑥,𝑦, 𝜇) ≥ −𝜇𝜆𝑚
1
2� (𝐵3 𝐵3𝑇)‖𝑥‖ ‖𝑦‖ ∀ (𝑥, 𝑦, 𝜇)𝜖  𝑁𝑥0 × 𝑁𝑦0 ×,𝑀 

 where 𝜆𝑚(𝐵𝑖) are the minimal eigenvalues of the matrices 𝐵𝑖, 𝑖 = 1,2;  𝜆𝑚
1
2� (𝐵3 𝐵3𝑇) is the norm of the 

matrix (𝐵3 𝐵3𝑇); 𝜆𝑚(𝐵3 𝐵3𝑇) is the maximal eigenvalue of the matrix 𝐵3 𝐵3𝑇;  𝑁𝑦0 = �𝑦:𝑦𝜖 𝑁𝑦;𝑦 ≠

0�;𝑀 = (0,1]. The equation (2.5) have the estimate as follows  

𝑣(𝑥,𝑦, 𝜇) ≥ 𝑈𝑇𝐻𝑇𝐴𝐻𝑈 𝑣(𝑥,𝑦, 𝜇)𝜖𝑁𝑥 × 𝑁𝑦 ×M Where 𝑈𝑇 = (‖𝑥‖ ‖𝑦‖);𝐻 = 𝑑𝑖𝑎𝑔 (𝜂1 𝜂2); 

𝐴(𝜇) = �
𝜆𝑚(𝐵1) −𝜇𝜆𝑚

1
2� (𝐵3 𝐵𝑇3)

−𝜇𝜆𝑚
1
2� (𝐵3 𝐵3𝑇) 𝜇𝜆𝑚(𝐵2)

�                                                                           

For the derivatives of the elements of the matrix-valued function (2.4) along the solutions of the 

system (2.1) we have the following estimates                        

(a).(∇𝑥 𝑣11)𝑇𝑓(𝑥, 0) ≤ 𝑃11‖𝑥‖2 ∀ 𝑥𝜖𝑁𝑥0;                                                                   

(b).(∇𝑥 𝑣11)𝑇𝑓∗(𝑥,𝑦) ≤ 𝑃11‖𝑥‖2 + 2𝑃13
1
2� ‖𝑥‖ ‖𝑦‖   ∀ (𝑥,𝑦, )𝜖  𝑁𝑥0 × 𝑁𝑦0;                                

(c).�∇𝑦 𝑣22� 𝑇𝑔(0,𝑦) ≤ 𝜇𝑃21‖𝑦‖2 ∀(𝑦,𝑚)𝜖𝑁𝑦0 × 𝑀                                                                            

(d).�∇𝑦 𝑣22�𝑇𝑔∗(𝑥,𝑦) ≤ 𝜇𝑃22‖𝑦‖2 + 𝜇𝑃23
1
2� ‖𝑥‖ ‖𝑦‖   ∀ (𝑥,𝑦, 𝜇)𝜖  𝑁𝑥0 × 𝑁𝑦0 × 𝑀                      

(e). (∇𝑥 𝑣12)𝑇𝑓(𝑥, 0) ≤ 𝜇𝑃15
1
2� ‖𝑥‖ ‖𝑦‖   ∀ (𝑥,𝑦, 𝜇)𝜖  𝑁𝑥0 × 𝑁𝑦0 × 𝑀;                                                 

(f). (∇𝑥 𝑣12)𝑇𝑓∗(𝑥,𝑦) ≤ 𝜇𝑃17
1
2� ‖𝑥‖ ‖𝑦‖ + 𝜇𝑃18‖𝑦‖2 ∀ (𝑥,𝑦, 𝜇)𝜖  𝑁𝑥0 × 𝑁𝑦0 × 𝑀 → (2.7)           
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(g).(∇𝑦 𝑣12)𝑇𝑔(0,𝑦) ≤ 𝜇𝑃25
1
2� ‖𝑥‖ ‖𝑦‖  ∀ (𝑥,𝑦, 𝜇)𝜖  𝑁𝑥0 × 𝑁𝑦0 × 𝑀;                                                          

(h).(∇𝑦 𝑣12)𝑇𝑔∗(𝑥,𝑦) ≤ 𝜇𝑃26‖𝑥‖2 + 𝜇𝑃27
1
2� ‖𝑥‖ ‖𝑦‖ 𝜖𝑁𝑥 × 𝑁𝑦 × 𝑀                                                         

Where 𝑃11,𝑃12,𝑃21, 𝑃22, 𝑃18   𝑃26 are the maximal  eigenvalues  of the matrices  

𝐵1 𝐴11 + 𝐴11𝑇  𝐵1 + 𝐵1𝑞1𝐾1∗ 𝐶11𝑇 + (𝑞1 𝐾1∗ 𝐶11𝑇 )𝑇𝐵1,  

 𝐵2𝐴22 + 𝐴22𝑇  𝐵2 + 𝐵2𝑞2𝐾2∗𝐶22𝑇 + (𝑞2𝐾2∗𝐶22𝑇 )𝑇𝐵2, 

𝐵2𝑞2𝐾2∗𝐶22𝑇 + (𝑞2𝐾2∗𝐶22𝑇 )𝑇𝐵2,   

𝐴12𝑇  𝐵3 + (𝑞1𝐾1∗𝐶12𝑇 )𝑇𝐵1  

𝐴3 𝐴21 + 𝐵3 𝑞2 𝐾2∗ 𝐶1𝑇 Respectively; 

Where  𝑃13
1
2� ,𝑃23

1
2� ,𝑃15

1
2� ,𝑃17

1
2� ,𝑃25

1
2�  𝑃27

1
2�  Are the norms of the matrices. 

𝐵1 𝐴12 + 𝐵1𝑞1𝐾1∗𝐶12𝑇 ,                                                                                                                              

  𝐵2 𝐴21 + 𝐵2𝑞2𝐾2∗𝐶21,
𝑇                                                                                                                                             

𝐴11𝑇  𝐵3 + (𝑞1𝐾1∗𝐶12𝑇 )𝑇𝐵3,                                                                                                                                       

(𝑞1𝐾1∗𝐶12𝑇 )𝑇𝐵3,                                                                                                                                                   

𝐵3 𝐴22 + 𝐵3𝑞2𝐾2∗𝐶22,
𝑇                                                                                                                                                      

𝐵3𝑞2𝐾2∗𝐶22,
𝑇  Respectively.                                                                                                                                     

𝐾𝑖∗ = �
𝑘𝑖 𝑓𝑜𝑟 𝜎𝑖𝑞𝑖  𝐵𝑗𝑥 > 0�𝑜𝑟 𝜎𝑖𝑞𝑖  𝐵𝑗𝑦 > 0 �;

0 𝑓𝑜𝑟 𝜎𝑖𝑞𝑖 𝐵𝑗𝑥 ≤ 0�𝑜𝑟 𝜎𝑖𝑞𝑖  𝐵𝑗𝑦 ≤ 0 �  � 𝑖 = 1,2
𝑗 = 1,2,3�

�                                                     

Denoting the upper bound of the derivative of the function (2-5) 

 By    𝑑
𝑑𝑡
𝑣𝑚(𝑥,𝑦, 𝜇), we find the estimate. 𝑑

𝑑𝑡
𝑣𝑚(𝑥,𝑦, 𝜇) ≤ 𝑢𝑇𝑐 (𝜇)𝑢,→ (2.8)                                                                                         

Where   c(𝜇) = �
𝜎11 𝜎12
𝜎21 𝜎22� ,𝜎12 = 𝜎21; 
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𝜎11 = 𝜂12(𝑃11 + 𝑃12) + 2𝜂1 𝜂2 𝑃26;                                                                                                                       

𝜎22 = 𝜂22(𝑃21 + 𝑃22) + 2𝜇 𝜂1𝜂2 𝑃18;                                                                                                         

 𝜎12 = 𝜂12 𝑃13
1
2� + 𝜂22𝑃23

1
2� + 𝜂1𝜂2 �𝜇𝑃15

1
2� + 𝜇𝑃17

1
2� + 𝑃25

1
2� + 𝑃27

1
2� �                                                              

We introduce the quantities  

𝜇1 = −𝜂2(𝑃21+𝑃22)
2𝜂1𝑃18

;  𝜇2 = −𝑏±√𝑏2−4𝑎𝑐
2𝑎

;  µ0 = min(µ1,µ2)                        

  Where 𝑎 = 𝜂12 𝜂22  �𝑃15
1
2� + 𝑃17

1
2� �

2
;                                                                                

 𝑏 = 𝜂2𝜂2 �𝑃15
1
2� + 𝑃17

1
2� � �𝜂12 𝑃13

1
2� + 𝜂22𝑃23

1
2� + 𝜂1𝜂2 �𝑃25

1
2� + 𝑃27

1
2� �� − 2 𝜂1𝜂2 𝑃18 𝜎11;        

             𝑐 = �𝜂12 𝑃13
1
2� + 𝜂22𝑃23

1
2� + 𝜂1𝜂2 �𝑃25

1
2� + 𝑃27

1
2� ��

2
−𝜂22(𝑃21 + 𝑃22)𝜎11                                         

Implies that 𝜇0 > 1, then we consider 𝜇 𝜖(0,1]                                                                                      

      

 

  3.           Statement of the main results  

Proposition 3.1. The matrix 𝑐(𝜇) is negative-definite for every 𝜇 𝜖(0,1]  and for μ→ 0 if the following 

conditions hold; 

(a).𝜎11 < 0                                                                                                                                                                

(b).𝜂1𝑃18 > 0                                                                                                                                                                     

(c).𝜂2(𝑃21 + 𝑃22) < 0 

(d).𝑐 < 0                                                                                                                                                                 

Remark 3.1. If 𝜂1𝑃18 ≤ 0 and the conditions (a),(b),(d) of proposition 3.1 are satisfied, then its 

assertion remains valid for 𝜇0 = 𝜇2 
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Theorem 3.1. Assume that the singularly perturbed Lurie system (2.1) is such that the matrix-valued 

function (2.4) has been constructed for it, the elements of which satisfy the estimates (2.6) and for the 

upper bound of the derivative of the function (2.5) the estimate (2.7) holds in this case ,if 

(a). The matrix A is positive-definite; 

(b). The matrix 𝑐(𝜇) is negative-definite for every 𝜇 𝜖(0, 𝜇0)  and for μ→ 0  

Then the equilibrium state (𝑥𝑇 ,𝑦𝑇) = 0 of the system (2.1) is uniformly asymptotically stable for every 

𝜇 𝜖(0, 𝜇0)  and for μ→ 0 if, furthermore, 𝑁𝑥 × 𝑁𝑦 = 𝑅𝑛+𝑚 Then the equilibrium state of the system 

(2.1) is uniformly asymptotically stable on the whole for every 𝜇 𝜖(0, 𝜇0)  and for μ→ 0. 

Proof. On the basis of the matrix-valued function (2.4) with the aid of the vector 𝜂𝜖𝑅2+,𝞰 > 𝟎, we 

construct the scalar function (2.5) under the estimates (2.6) one can show that 𝑣(𝑥,𝑦, 𝜇) ≥

𝑈𝑇𝐻𝑇𝐴𝐻𝑈 ∀(𝑥,𝑦, 𝜇)𝜖𝑁𝑥 × 𝑁𝑦 ×M. Then from condition (a) of theorem 3.1 there follows that the 

function 𝑣(𝑥, 𝑦, 𝜇) is positive-definite. For the derivative 𝑑
𝑑𝑡
𝑣(𝑥, 𝑦, 𝜇) the estimate (2.7) holds from here 

and from condition (b) of the theorem 3.1 there follows that the derivative 𝑑
𝑑𝑡
𝑣(𝑥,𝑦, 𝜇) of the function 

(2.5) is negative-definite for every 𝜇 𝜖(0, 𝜇0)  and for μ→ 0. As is known (see Grujic, Martynyuk and 

Ribbens-Pavella [3] ), these conditions are sufficient for the uniform asymptotic stability of the 

equilibrium state of the system (2.1). In this case 𝑁𝑥 × 𝑁𝑦 = 𝑅𝑛+𝑚 the function 𝑣(𝑥,𝑦, 𝜇) is radially 

unbounded which, together with the other conditions, proves the second assertion of this theorem. 

This is the absolute stability of the system (2.1), 𝜇0 being an estimate of the upper bound of the 

variation of the parameter μ. 

This complete the proof.    

   EXAMPLE:  we consider a system of the form 

𝜇 𝑑𝑦
𝑑𝑡

= 𝜇𝐴21𝑥 + 𝐴22𝑦 + 𝑞2𝑓2(𝜎2),𝜎2 = 𝐶21𝑇 𝑥 + 𝐶22𝑇 𝑦  in which 
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𝐴11 = � 0 1
−1 −2�    𝑞1 �

0
0.1� ;   𝐶11 = �−0.01

0 � ;    

𝐴12 = �1 0
0 1� ;   𝐶12 = �1

1�   (𝐾1 = 2);  

𝐴21 = �0.001 0
0 0.001� ;   𝐶21 = �0.001

0 � ;  𝑞2 = �1
1� ;                                                                              

 𝐴22 = �−4 1
1 4� ;   𝐶22 �

1
0�   (𝐾2 = 1); 

The matrix-valued function (2.4) has the elements 𝑣11 = 𝑥𝑇 �0.3 0.1
0.1 0.3� 𝑥;   

𝑣22(𝑦, 𝜇) = 𝜇𝑦𝑇 �2 0
0 2� 𝑦;  

𝑣12(𝑥,𝑦, 𝜇) = 𝑣21(𝑥,𝑦, 𝜇) = 𝑀𝑥𝑇 �0.01 0
0 0.01� 𝑦,  

  For which we have the estimates     

 𝑣11(𝑥) ≥ 0 ∙ 2‖𝑥‖2;  𝑣22(𝑦, 𝜇) ≥ 2𝜇‖𝑦‖2;  

  𝑣12(𝑥,𝑦, 𝜇) ≥ −0.01𝜇‖𝑥‖ ‖𝑦‖  

If 𝜂𝑖 = 1, 𝑖 = 1,2 then the matrix 𝐴 = � 0.2 −0.01𝜇
−0.01𝜇 2𝜇 �    

 which is positive-definite for every 𝜇𝜖 (0,1).                                
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