
American Journal of Research Communication                                             www.usa-journals.com 

ZeinEldin, et al., 2014: Vol 2(2)                                 7                                  ajrc.journal@gmail.com 

A Hybrid Approach for Solving Nonlinear Optimization Problems 

Ramadan A. ZeinEldin1, Ayman M. Senosy2 

1Operations Research Department, ISSR, Cairo University, Egypt 
Email:  rzeanedean@yahoo.com 

2Professional Academy for Teachers, Egypt 
Email: ayman_ms8@hotmail.com 

 

 

 

Abstract 

In this paper, we propose a hybrid optimization approach for solving nonlinear 
optimization problems, using the ant colony optimization as an initial phase to 
generate initial solutions then they are improved by using particle swarm 
optimization. Twelve test functions with lower and upper bounds, eight problems are 
unconstrained optimization problems and four problems are constrained optimization 
problems are used to test the proposed approach. We got good results compared with 
other methods.  
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1. Introduction 

In our real world a lot of problems occurring in applications involve either 
nonlinear objective functions or nonlinear constraints or both. Nonlinear optimization 
under nonlinear constraints is usually difficult and there is no a method best for 
solving all problems [2]. In fact there are different methods for solving nonlinear 
problems, and there is no one method best for solving all problems. But in recent 
years, family of stochastic search algorithms, known as evolutionary algorithms, 
which are inspired by biological evolution are introduced to overcome the drawbacks 
of classical methods. Evolutionary algorithms have many advantages that make these 
algorithms better in use than traditional nonlinear programming methods [14].  

A nonlinear optimization problem in which the objective function is minimized 
is defined as the follows [1]:  
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𝑚𝑖𝑛 𝑓(𝑥)   (1) 

𝑠. 𝑡. 𝑔𝑖(𝑥) ≤ 0 ,  𝑖 = 1 , … ,𝑚  

 ℎ𝑖(𝑥) = 0 ,  𝑖 = 1 , … , 𝑙  

 𝑥 ∈  𝑋    

Where 𝑓,𝑔1 , … ,𝑔𝑚 ,ℎ1 , … , ℎ𝑙 are functions defined on𝑅𝑛 ,   𝑋 is a subset of 𝑅𝑛 and 

𝑥 is vector of 𝑛 components𝑥1, … , 𝑥𝑛.   

Each of the constraints 𝑔𝑖(𝑥) ≤ 0 for 𝑖 = 1 , … ,𝑚 is called inequality constraint, 
and each of the constrained ℎ𝑖(𝑥) = 0 for 𝑖 = 1 , … , 𝑙 is called an equality constraint. 
The set 𝑋 include lower and upper bounds on the variables. A vector 𝑥 ∈ 𝑋 satisfying 
all the constraints is called a feasible solution to the problem and the point 𝑥̅ is called 
an optimal solution if 𝑓(𝑥̅) ≤ 𝑓(𝑥) for each feasible point  𝑥.  

The nonlinear programming problem can be maximization problem. And in case 
of omitting the constraints, we have an unconstraint problem, and the whole domain 
of the objective function is feasible set. 

In this paper, a hybrid approach is developed for solving nonlinear 
optimization problems using ant colony optimization as an initial step then the results 
are improved by using particle swarm optimization. The rest of this paper is 
organized as follows. Following this introduction, in section 2, a general view about 
nonlinear is presented. In section 3, the evolutionary algorithms; ant colony 
optimization and particle swarm optimization are introduced as one of metaheuristics 
methods. In section 4, the proposed approach is presented with its parameters. In 
section 5, a number of numerical experiments are performed. The conclusion and 
future work are discussed in section 6. Finally, we list the unconstrained test 
problems in appendix A and the constrained test problems in appendix B. 

 

2. Nonlinear Problems 

The Problems can be classified according to the nature of the objective function 
and constraints, the number of variables, the smoothness of the functions 
(differentiable or non-differentiable), and so on. Nonlinear problems (NLPs) are often 
difficult to solve and the most efficient algorithms provide no guarantees of success 
or fast performance over a range of applications [2]. We have two types of methods 
to solve NLPs; Mathematical methods which are based on calculus and geometry and 
the other methods are heuristic and metahuristic methods which are based on search 
heuristic such as genetic algorithms and simulated annealing [3]. The traditional 
mathematical methods for solving NLPs need a set of conditions to be verified in the 
problem before solving it such as differentiability and continuity [2]. For that many 
researches focused on heuristic and metahuristic methods in solving NLPs. 
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2.1. Unconstrained Problems 

Unconstrained optimization problems (UOPs) arise directly in many practical 
applications, due to its importance, such as data fitting problems, engineering design 
and process control [4]. This type of problems minimizes or maximizes the function 
in absence of restriction. It can be formulated as:  

𝑚𝑖𝑛 𝑓(𝑥)   (2) 

𝑠. 𝑡. 𝑥 ∈  𝑅𝑛    

Where 𝑅𝑛 is the n-dimensional space of real numbers. These problems can be 
distributed between small problems to large problems in the real-world. UOPs arise 
also as reformulations of constrained optimization problems, in which the constraints 
are replaced by penalization terms in the objective function that have the effect of 
discouraging constraint violations [1]. UOPs methods try to start the solution by 
guessing a solution, and then improve this solution to return many local minimum 
solutions. The challenge faces these methods is how to find the global minimum 
solution or at least a solution near to this global solution [4]. 

 

2.2. Constrained Problems 

Constrained optimization problems (COPs) arise from models that include 
explicit constraints on the variables. When at least one constrained or the objective 
function is nonlinear, the problem becomes constrained nonlinear problem. These 
types of problems tend to arise naturally in the physical sciences and engineering, 
and are becoming more widely used in management and economic sciences. The 
problem can be formulated as equation (1) mentioned in section 1. 

Solving a constrained optimization problem with inequality, upper bound, and 
lower bound constraints usually includes mathematical model building and algorithm 
designing. Many methods have been posed from Newton Method, Linear Search to 
Evolutionary Computation, which has respective characteristics. The constrained 
optimization methods often use unconstrained optimization as a step [5]. 

Sarimveis et al. [14] proposed a new methodology for solving constrained 
optimization problems.  It  is based on the formulation of an augmented Lagrange 
function, which is penalizes the violations of the equality and inequality constraints 
by including them in the objective function and multiplying them with appropriate 
penalty weights. The methodology is based on the line-up differential evolution 
algorithm which is proposed for solving unconstrained problem. The algorithm 
maintains a population of solutions which is continuously improved. They tested their 
methodology and claimed that it  can be used as a robust and reliable approach for 
solving constrained optimization problems which are difficult to solve by the 
traditional optimization algorithms. He et al. [8] proposed a new filled function with 
one parameter for solving constrained global optimization problems, in which the 
filled function contains neither exponential term nor fractional term and is easy to be 
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calculated. They perform some numerical experiments for some typical test problems 
and they reached that their new algorithm is feasible and effective. Yano et al. [18] 
proposed a hybrid algorithm to obtain more precise solutions. They introduced a 
neighborhood search algorithm to the standard particle swarm; they applied PSO to 
determine the minimum values. In the algorithm, when a better solution in the swarm 
is found, the neighborhood of a certain distance from the solution is searched. Then 
the algorithm returns to the original PSO search. Mingjun et al. [10] proposed an 
improved simulated annealing (ISA), a global optimization algorithm for solving the 
linear constrained optimization problems, of which characteristics are that only one 
component of current solution is changed based on the Gaussian distribution in each 
iteration and ISA can directly solve the linear constrained optimization problems. 
They compared their proposed approach with classical techniques and show that the 
proposed algorithm is the best one. 

 

3. Evolutionary Algorithms 

Evolutionary Algorithms (EAs), which are based on a powerful principle of 
evolution; survival of the fittest, and which model some natural phenomena. During 
the last two decades there has been a growing interest in algorithms which are based 
on the principle of evolution [12]. Classical methods usually are exhaustive in 
finding the best solution for small spaces but in large spaces special artificial 
intelligence techniques must employed. The methods of evolutionary computation are 
among such techniques. There are a few main paradigms of evolutionary computation 
techniques such as genetic algorithms. Many researchers try to modify evolutionary 
algorithms either by modifying the values of strategy parameters during the run of the 
algorithm, or by hybridize methods [9] [15]. 

In this paper there is  hybridization is happened between two EAs; ant  colony 
optimization and particle swarm optimization.  

 

3.1 Ant Colony Optimization 

Ant Colony Optimization Algorithm (ACO) is a meta-heuristic optimization 
method proposed by Dorigo et al. [7] for the solution of discrete combinatorial 
optimization problems such as the traveling salesman problem and the quadratic 
assignment problem. The method has been shown to outperform other general purpose 
optimization algorithms including genetic algorithms (GA) when applied to a number 
of benchmark combinatorial optimization problems. In the ACO algorithm a colony of 
artificial ants cooperate in finding good solutions to discrete optimization problems 
[17]. The foraging behavior of ant colonies has been intensively studied and the 
bionics corresponding to this behavior finds various applications. The indirect 
communication between ants is accomplished through pheromones. A pheromone is a 
chemical substance that triggers a natural response in another member of the same 
species. There are many types of pheromones deposited by ants, e.g., aggregation 
pheromones, alarm pheromones, trail pheromones, etc. Here we are interested in trail 
pheromones, which are deposited by ants with food as they return to their nest; they 



American Journal of Research Communication                                             www.usa-journals.com 

ZeinEldin, et al., 2014: Vol 2(2)                                 11                                  ajrc.journal@gmail.com 

attract other ants and get them to go along the pheromone trail to find food. The 
famous bridge experiment shows that ants always can find the shortest path between 
the colony and food source [8].  

The move probability distribution defined probability 𝑃𝑖Ψ𝑘  to be equal to 0 for 
all moves which are infeasible, otherwise they are computed by means of formula (3) 
where 𝛼 and 𝛽 are user defined parameters ( 0 ≤  𝛼 ,𝛽 ≤ 1 ) 

𝑃𝑖Ψ𝑘 = �
𝛼𝜏𝜄𝜓 + 𝛽𝜂𝜄𝜓

∑ �𝛼𝜏𝜄𝜓 + 𝛽𝜂𝜄𝜓�(𝜄𝜓)∉𝑡𝑎𝑏𝑢𝑘
𝑖𝑓 (𝜄𝜓) ∉ 𝑡𝑎𝑏𝑢𝑘

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                             (3) 

In formula (3) 𝑡𝑎𝑏𝑢𝑘 is the tabu list of ant 𝑘,  while parameters 𝛼 and 𝛽 specify 
the impact of trail and attractiveness, respectively. After each iteration  𝑡 of the 
algorithm, i.e.,  when all ants have completed a solution, trails are updated by mean of 
formula (4) 

𝜏𝜄𝜔(𝜏) = 𝑝 𝜏𝜄𝜔(𝜏 − 1) + Δ𝜏𝜄𝜔                                   (4) 

Where  Δ𝜏𝜄𝜔 represents the sum of the contributions of all ants that used move (𝜄𝜔) to 
construct their solution,  0 ≤ 𝑝 ≤ 1 ,  is a user-defined parameter called evaporation 
coefficient. The ants' contributions are proportional to the quality of the solutions 
achieved, i .e.,  the better solution is the higher will be the trail contributions added to 
the moves it  used.  

 

3.2 Particle Swarm Optimization (PSO) 

Many scientists have attempted to simulate bird flocking and fish schooling 
behaviors on computers for a long time. Kennedy and Eberhart suggested an 
optimization method called particle swarm optimization (PSO) [11]. PSO is derived 
from two main components; artificial life in swarm, and swarming theory. In PSO, 
individuals communicate and exchange information with other. The individuals 
change directions suddenly, scatter, and regroup. The velocity is used to describe the 
movement of birds.  The particle swarm optimization has been found to be robust and 
fast in solving nonlinear problems [6]. The searching procedures are iterative, and the 
position and velocity are used to explore the optimum solution in the search space. At 
any time 𝑡,  each particle knows its current position 𝑥𝑖𝑡 and remember its personal best 
position 𝑥𝑖𝑝𝐵𝑒𝑠𝑡𝑡  .  And every member in the swarm knows the global best position 𝑥𝐺𝑏𝑒𝑠𝑡𝑡  
which represents the best particle in flock. The velocity 𝑣𝑖𝑡+1 of particle 𝑖 can be 
calculated according to the following equation: 

𝑣𝑖𝑡+1 = 𝑤𝑣𝑖𝑡 + 𝑐1𝑟1(𝑥𝑖𝑃𝐵𝑒𝑠𝑡𝑡 −  𝑥𝑖𝑡) + 𝑐2𝑟2(𝑥𝐺𝐵𝑒𝑠𝑡𝑡 −  𝑥𝑖𝑡)                 (5) 

Where 𝑐1and 𝑐2 are constants called acceleration coefficients, the parameters 𝑟1 and 𝑟2 
are two independent random numbers in the interval [0 ,  1]. The parameter 𝑤 is  called 
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inertial weight. Then, the position 𝑥𝑖𝑡+1 of particle 𝑖 is updated in each generation as 
shown below: 

𝑥𝑖𝑡+1 =  𝑥𝑖𝑡 +  𝑣𝑖𝑡+1                          (6) 

 

4. The Proposed Approach 

In the proposed hybrid approach, there are two phases; ACO is started in phase 
1 to generate a set of initial points. Then phase 2 is started to improve the results we 
got from ACO using PSO. We run the proposed approach 50 runs. 

4.1 ACO Parameters 

In ACO phase, the range of the function 𝑓 in equation (1) is divided into 
number of parts (set to be 5 parts) to generate different points along the whole range. 
Different combined points are collected to form a number of paths. We set the 
number of ants to be 100 ants, and stopping criteria is where 50% of ants pass a 
certain path.  

4.2 PSO Parameters 

In PSO phase, the parameters of PSO set as follows: the number of iterations 
set to be 500,  Wmax = 0.9 ,   Wmin = 0.4,  j  = 1 , 2 , 3 , ….. jmax which are used in the 
equation  w =  (Wmax−Wmin)

jmax
∗ j ,   Population size (N) set to be equal to the number of 

satisfied points, c1 and c2 are random numbers between [1 , 2 ]  

 

4.3 The Proposed Approach steps 

4.3.1 Initialization Step 

Step 1 : Define ACO parameters; number of ants ,  stopping criteria, 
number of accepted solutions, number of paths 

Step 2 : Divide the range of function into a number of parts, and define the 
intervals of each part. 

Step 3 : Generate points in each part of range. 
Step 4 : Combine different points from different parts to form different 

paths. 
Step 5 : Calculate the objective function for each path. 
Step 6 : Arrange the objective function.  
Step 7 : Give weights for each path according to the order of objective 

function. 
Step 8 : Calculate the probability, expected number of ants and the new 

trail of each path 
Step 9 : Start calculating next trails to define the best path. Stop when 

meeting stopping criteria. 



American Journal of Research Communication                                             www.usa-journals.com 

ZeinEldin, et al., 2014: Vol 2(2)                                 13                                  ajrc.journal@gmail.com 

Step 10 : Store the points  
 

4.3.2 Main Step 

Step 1 : Set the parameters of PSO. 
Step 2 : If the problem has constraints select only the points satisfy the 

constraints, else select all points. 
Step 3 : Calculate the objective functions. 
Step 4 : Calculate the velocities, then generate new points 
Step 5 : Check the feasibility of new points. 
Step 6 : Repeat step 2 till  stopping criteria. 
 

5. Numerical Experiments 

 Eight unconstrained problems are listed in Appendix A, these problems are 
compared by other methods in papers [13] [14] [18] which are listed in table 2, and 
necessary calculations are performed in order to reach satisfied results which are 
listed in table 1. Four constrained problems are listed in Appendix B, and the results 
listed in table 1, we compared our results with those in papers [8] [14] which are 
listed in table 4. All the numerical experiments are compared from the aspects of 
global minimum value (best value), mean, global maximum (worst value), standard 
deviation (SD) and the elapsed time, in order to show the effectiveness of the 
proposed approach. 

 

Table 1: The unconstrained problems results using the proposed approach 

Test 

Prob. 
Pro. 1 Pro. 2 Pro. 3 Pro. 4 Pro. 5 Pro. 6 Pro. 7 Pro. 8 

Type Min Min Min Max Min Min Min Min 

Dim 2 2 2 2 2 2 2 3 

Optimal 3 0 -186.73 38.8503 -1.0316 –176.542 
–

176.1375 
0 

Best 

value 
-1.388e+05 0 -186.731 38.8503 -1.0316 -176.542 

-

176.1373 

1.4998e-

032 

Mean -1.388e+05    24.4921 -186.7309 38.6583 -1.0316 -176.542 
-

159.8619 

1.4998e-

032 

Worst 

value 
-1.388e+05    48.9843 -186.7309 29.85123 -1.0316 -176.542 -90.8973 

1.4998e-

032 

SD 0.484150    25.8170 7.7251e-014 1.271833 6.7290e-016 2.3675e-014 22.4703 
1.3823e-

047 

Time 3.2850     1.1250 6.3520 9.480 2.9150 10.4550 5.8620 15.5310 
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Table 2: The results of the proposed approach compared with other methods  

Test Prob. 
Parsopoulos K. et al  

[13] 

Sarimveis H.  et al.  

[14] 

Yano F. et al  

[18] 
The Proposed 

Prob. 1 3   -1.388e+05 

Prob. 2 0   0 

Prob. 3  - 186.73  -186.731 

Prob. 4  38.8503  38.8503 

Prob. 5   -1.0316 -1.0316 

Prob. 6 –176.542   -176.542 

Prob. 7 –176.1375   -176.1373 

Prob. 8 0   1.4998e-032 

 

 

In Table 1, eight unconstrained problems are solved. We Ran the algorithm 10 
runs for each problem. In all the execution of the algorithm the population consists of 
25 solutions, which is the solution of each path we got from phase1. Table 1 
summarizes the obtained results including the best and worst solutions out of 50 
executions, the average of solutions and standard deviations with respect to the 
average. The algorithm is compared with papers [13], [14] and [18] and show that the 
algorithm is good in finding the optimal solution and in some cases we got results 
better than the optimal such as in problem 1. 

 

 

Table 3: The constrained problems results using the proposed approach 

Prob.  Pro.  9  Pro.  10  Pro.  11  Pro.  12  

Type  Min  Min Min Min 

Dim 2 2 2 2 

Best  va lue    -0 .97110407    -2 .71828183    -5 .50801     5 .00000  

Mean   -0 .80163098    -1 .76120782    -5 .50801     5 .00003  

Worst  va lue  0    4 .49204612    -5 .50800     5 .00038  

SD    0 .35497602     1 .67802185  
    1 .6961178e-

05 

    6 .5799133e-

005 

Time 4.1340 1.6840  3.3220  2.6360  
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Table 4: The results of the proposed approach compared with other methods 

Test  

P rob lem 

He,  S .  e t  a l   

[8]  

Sarimveis H.  et al.  

[14] 

Wang,  W  

e t  a l  [16]  

Zhang,  Y et  a l  

[19]  

Zhang Y 

et  a l  [20]  
Th e proposed  

P rob .  9  
-0 .97110407 

 
  -0 .9711041  -0 .97110407 

P rob .  10 
-2 .71828183 

 
   -2 .7183  -2 .71828183 

P rob .  11 
-5 .50801327 

 

-5 .50801 

 
-5 .5079    -5 .50801 

P rob .  12  
5  

 
   5 .00000 

 

Table 3 summarized the results we have got after 10 runs. The algorithm is 
compared with papers [8], [14], [16], [19]  and [20] shown in table 4.  The optimal 
value is reached within 4 seconds in most cases.  

 

6. Conclusion and future work 

By applying the hybrid approach to the test optimization problems, the 
approach is examined and good results are obtained in comparing with others. 
Numerical results shows that the proposed approach is better with small scale 
problems, but with large scale problems (especially constrained problems) it  takes a 
long time to reach a feasible solution. One can extend the work by introducing the 
idea of decreasing the time consumed in solving constrained large scale problem by 
converting it  into unconstrained problems as first step using other heuristic 
algorithm, then decreasing the number of paths in searching the feasible solution. 

 

 

7. Appendix A: (Unconstrained Problems)  

Problem 1 (Goldstein-Price): [13] 

𝑚𝑖𝑛  𝑓(𝑥) = [1 + (𝑥1 + 𝑥2 + 1)2(19− 14𝑥1 + 3𝑥12 + 6𝑥1𝑥2 + 3𝑥22)][30

+ (2𝑥1 − 3𝑥2)2(18− 32𝑥1 + 12𝑥12 + 48𝑥2 − 36𝑥1𝑥2 + 27𝑥22)] 

𝑠. 𝑡. -2  ≤ 𝑥𝑖 ≤ 2 𝑖 = 1 , 2  
 

Problem 2 (Freudenstein-Roth): [13]  
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𝑚𝑖𝑛  𝑓(𝑥) = �−13 + 𝑥1 +  �(5 − 𝑥2)𝑥2 − 2�𝑥2�
2 + �−29 +  𝑥1 +  �(𝑥2 + 1)𝑥2 − 14�𝑥2�

2 

 -5 ≤  𝑥1 ≤  5 

-5 ≤  𝑥2 ≤  5 
 

Problem 3 (Shubert):  [14] 

𝑚𝑖𝑛 
 𝑓(𝑥) = �𝑖 𝑐𝑜𝑠 ⌊(𝑖 + 1)𝑥1 + 𝑖⌋

5

𝑖=1

�𝑖 𝑐𝑜𝑠 ⌊(𝑖 + 1)𝑥2 + 𝑖⌋
5

𝑖=1

 

𝑠. 𝑡. -10 ≤  𝑥1 ≤  10 

-10 ≤  𝑥2 ≤  10 
 

Problem 4: [14] 

𝑚𝑖𝑛  𝑓(𝑥) = 21.5 +  𝑥1 𝑠𝑖𝑛(4𝜋𝑥1) + 𝑥2𝑠𝑖𝑛(20𝜋𝑥2) 

𝑠. 𝑡. -3.0 ≤  𝑥1 ≤  21.1 

4.1 ≤  𝑥2 ≤  5.8 
 

Problem 5 (Six hump camel back): [18] 

𝑚𝑖𝑛 
 𝑓(𝑥) = �4 − 2.1𝑥12 +

𝑥14

3 �
𝑥12 + 𝑥1𝑥2 + (−4 + 4𝑥22)𝑥22 

𝑠. 𝑡. -3 ≤  𝑥1 ≤  3 

-2 ≤  𝑥2 ≤  2 
 

Problem 6 (Leavy No. 3): [13]  

𝑚𝑖𝑛 
 𝑓(𝑥) = ��𝑖 𝑐𝑜𝑠 �(𝑖 − 1)𝑥1 + 𝑖��

5

𝑖

��𝑗 𝑐𝑜𝑠 �(𝑗 + 1)𝑥2 + 𝑗��
5

𝑗

 

𝑠. 𝑡. 
 

-10 ≤  𝑥1 ≤  10 

-10 ≤  𝑥2 ≤  10 

Problem 7 (Leavy No. 5): [13] 

𝑚𝑖𝑛  𝑓(𝑥) = ∑ �𝑖 𝑐𝑜𝑠 �(𝑖 − 1)𝑥1 + 𝑖��5
𝑖 ∑ �𝑗 𝑐𝑜𝑠 �(𝑗 + 1)𝑥2 + 𝑗��5

𝑗 + (𝑥1 + 1.42513)2 

+(𝑥2 + 0.80032)2 
𝑠. 𝑡. -10 ≤  𝑥1 ≤  10 

-10 ≤  𝑥2 ≤  10 
 

Problem 8 (Leavy No. 8): [13] 
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𝑚𝑖𝑛 
 𝑓(𝑥) = 𝑠𝑖𝑛2(𝜋𝑦1) + �(𝑦𝑖 − 1)2[1 + 10 𝑠𝑖𝑛2(𝜋𝑦𝑖+1)]

𝑛−1

𝑖=1

+ (𝑦𝑛 − 1)2 

 𝑤ℎ𝑒𝑟𝑒 𝑦𝑖 = 1 +
𝑥𝑖 − 1

4
, 𝑖 = 1 , … ,𝑛 

𝑠. 𝑡. -10 ≤  𝑥𝑖 ≤  10 𝑓𝑜𝑟 𝑖 = 1,2,3 
 

 

8 .  Appendix B:  (Constrained Problems)  

Problem 9:  [8] [19]  

𝑚𝑖𝑛 
𝑓(𝑥) =  �4 − 2.1𝑥12 +

𝑥14

3 �
𝑥12 + 𝑥1𝑥2 + (−4 + 4𝑋22)𝑥22 

𝑠. 𝑡. 𝑔1(𝑥) = −𝑠𝑖𝑛(4𝜋𝑥1) + 2𝑠𝑖𝑛2(2𝜋𝑥2) ≤ 0 

 -1 ≤  𝑥𝑖 ≤  1 i=1,2 
 

Problem 10: [8] [20]  

𝑚𝑖𝑛 
𝑓(𝑥) =  −20𝑒𝑥𝑝�−0.2�

|𝑥1| + |𝑥2|
2

�− 𝑒𝑥𝑝�
𝑐𝑜𝑠(2𝜋𝑥1) + 𝑐𝑜𝑠(2𝜋𝑥2)

2 � + 20 

𝑠. 𝑡. 𝑔1(𝑥) = 𝑥12 + 𝑥22 ≤ 300 

 𝑔2(𝑥) = 2𝑥1 + 𝑥2 ≤ 4 

 -30 ≤  𝑥𝑖 ≤  30 𝑖 = 1,2. 
 

Problem 11: [8] [14]  [16] 

𝑚𝑖𝑛 𝑓(𝑥) =  −𝑥1 − 𝑥2 

𝑠. 𝑡. 𝑔1(𝑥) = 𝑥2 ≤ 2𝑥14 − 8𝑥13 + 8𝑥12 + 2 

 𝑔2(𝑥) = 𝑥2 ≤ 4𝑥14 − 32𝑥13 + 88𝑥12 − 96𝑥1 + 36 

  0 ≤  𝑥1 ≤  3  
 0 ≤  𝑥2 ≤  4  

 

Problem 12: [14]  

𝑚𝑖𝑛 𝑓(𝑥) =  0.01𝑥12 + 𝑥22 

𝑠. 𝑡. 𝑔1(𝑥) = 𝑥1𝑥2 − 25 ≥ 0 

 𝑔2(𝑥) = 𝑥12 + 𝑥22 − 25 ≥ 0 

 2 ≤  𝑥1 ≤  50 

0 ≤  𝑥2 ≤  50 
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