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ABSTRACT 

Magnetic property of a 2D Hubbard model is inferred from the result of Monte Carlo simulation. 

Lattice size of 4x4, and temperature down to T = 0.25 where studied. The plots of ρ versus µ  

exhibit some of the fundamental physics of the Hubbard model, namely the “Mott insulating 

gap”. At T = 0 the chemical potential has the property that µ  = ρ∂∂E . In words, µ    tells 

us how much the energy changes when we change the density of the system. Thus a jump in µ   

reflects the existence of a gap (and hence that our system is insulating). It turns out that even 

when interactions are turned on, and we cannot describe the system in terms of a bunch of energy 

levels, a jump in µ   still indicates the existence of a gapped, insulating phase. This is the most 

simple indication of a `Mott' insulating phase in the half-filled Hubbard model. The half-filled 

system is found to exhibit antiferromagnetic order for coulomb repulsion U = 4. Generally, 

antiferromagnetic order may exist at sufficiently low temperatures, vanishing at and above a 

certain temperature, the Néel temperature (named after Louis Néel (1948), who had first 

identified this type of magnetic ordering). The low temperature magnetic properties are found to 

be well described by the existence of a

gapped insulating phase.  Numerical evidence presented confirm the existence of a ‘Mott’ 

insulting phase for the half-filled Hubbard model, when interaction between electrons are switch 

off, for U = 4, and temperature as low as T = 0.25. 
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INTRODUCTION 

The Hubbard model offers one of the simplest ways to get insight into how the interactions 
between electrons can give rise to insulating, magnetic, and even novel superconducting effects 
in a solid. It was written down in the early 1960's and initially applied to understanding the 
behavior of the transition metal monoxides (FeO, NiO, CoO), compounds which are anti-
ferromagnetic insulators, yet had been predicted to be metallic by methods which treat strong 
interactions less carefully. 

            Over the intervening years, the Hubbard model has been applied to the understanding of 

many systems, from `heavy fermion' systems in the 1980's, to high temperature super-conductors 

in the 1990's. Indeed, it is an amazing feature of the model that, despite its simplicity, its exhibits 

behavior relevant to many of the most subtle and beautiful properties of solid state systems. 

           The Hubbard model has been studied by the full range of analytic techniques developed 

by condensed matter theorists, from simple mean field approaches to field theoretic methods 

employing Feynman diagrams, expansions in the degeneracy of the number of flavors' (spin, 

orbital angular momentum), etc. It has also been extensively attacked with numerical methods 

like diagonalization and quantum monte carlo. 

The Hubbard model is written in terms of `fermions' creation and destruction operators. 

These operators differ in several respects from the operators â +; â  for a single harmonic 

oscillator. Perhaps most confusing is a conceptual difference: the fermions operators in the 

Hubbard model are not introduced in terms of familiar position and momentum operators. Rather 

they stand on their own. 

Also, instead of just one creation and one destruction operator, in the Hubbard model 

there is a set of such operators, which are distinguished by attaching indices j and σ. Thus we 

write 
+
σjc  and σjc the index j labels the spatial lattice site and the index σ labels the electron 

spin (up or down). 

As a consequence, the occupation number states are no longer characterized by a single number 

σjn , as for a single harmonic oscillator, but instead by a collection of occupation numbers njσ. 

One writes such states as n1σ, n2σ, n3σ ….]. Because these operators are meant to describe 

fermions, they are defined to have certain anti-commutation relations. (The anti-commutator of 

two operators { Â ; B̂ } is defined to be ( AB + BA) 



American Journal of Research Communication                                   www.usa-journals.com 

Sabo, et al., 2013, 1(12)                                 370                               ajrc.journal@gmail.com         

                1,1][
σσσσ δδ jjj cc =+

                                                                         (1.1)
 

                 0][ 11 =++
σσ cc j                                                                                        (1.2) 

                 0][ 11 =
σσ cc j                                                                                      (1.3) 

An immediate consequence of these anti-commutation relations is the Pauli principle: the 

maximum occupation of a particular site with a given spin is 1. 

  

THE HUBBARD HAMILTONIAN 

Having introduced creation and annihilation operators, we can now write down the 

Hubbard Hamiltonian. Before doing so, let's think about how we might simply describe the 

motion and interactions of electrons in a solid. First, we need to account for the fact that there is 

a regular array of nuclear positions in a solid, which for simplicity we consider to be fixed. (In 

other words, we will not worry about lattice vibrations.) This suggests that we begin with a 

lattice of atoms (sites) on which the electrons move. A single atom is already a very complex 

structure, with many different energy levels. The most simple `atom' we can imagine would have 

a single energy level. Then, the Pauli principle would tell us that at most two electrons (one with 

spin up and one with spindown) can sit on this `atom'. In a solid where electrons can move 

around, the electrons interact via a screened Coulomb interaction. The biggest interaction will be 

for two electrons on the same atom. For simplicity, Hubbard stops just there, so that interactions 

are modeled by a term which is zero if the atom is empty of electrons or has only a single 

electron on it, but has the value U if the atom has two electrons. There is no interaction between 

electrons on different sites. 

Our kinetic energy will consist of an expression which allows electrons to move from one 

site to its neighbors. The energy scale t which governs this `hopping' will be determined by the 

overlap of two wave functions on the pair of atoms. Since wave functions die off exponentially, 

we can begin by allowing hopping only between the closest atoms in our lattice. Now let's 

formalize this construction. We define 
+
σjc  to be the operator which creates an electron of spin 
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σ on lattice site j. Similarly σjc  is the distruction operator, and σσσ jjj ccn +=  is the number 

operator. 

The Hubbard Hamiltonian is then, 

 H = )(1
)1(

↓↑↓↑
+ +−+− ΣΣΣ jj

j
jj

j
j

j
nnnnucct µσσ

σ                       (1.4) 

The first term is the kinetic energy: It describes the destruction of an electron of spin σ on site i 

and its creation on site j (or vice-versa). The symbol (ji) emphasizes that hopping is allowed only 

between two sites which are adjacent. The second term is the interaction energy. It goes through 

all the sites and adds an energy U if it finds that the site is doubly occupied. The final term is a 

chemical potential which controls the filling. 

We refer to the situation where the filling is one electron per site as `half filling' since the lattice 

contains half as many electrons as the maximum number (two per site). Studies of the Hubbard 

model often focus on the half filled case because it exhibits a lot of interesting phenomena (Mott 

insulating behavior, anti-ferromagnetic order, etc.) 

 

THE MONTE CARLO METHOD  

The Monte Carlo method is often referred to as a ‘computer experiment’. One might 

think of this as a way of conveying the fact that the output of simulations is not an equation, as in 

conventional theory. Instead, numbers appear on the computer screen in somewhat the same way 

that numbers appear on a measuring device in the laboratory. Thus there is the implication that 

somehow simulations are a bit of a ‘black box’ and that the use of the computer is hiding the 

underlying physics.  It is not a happy accident that the computer is generating configurations 

with the desired probability distribution! Indeed, the fundamental equations underlying 

simulations are the same as analytic theories and one can view simulations as a way of solving 

the mathematics (differential equations) when it becomes too complicated for analytic 

techniques. 
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With all that said, it is still useful to pursue the ‘Monte Carlo as experiment’ point of 

view. Consider the process of making a measurement in the laboratory. Nature prepares a 

‘configuration’ of the system, and the experimentalist takes that configuration and records a 

value for some quantity of interest. To get better statistics (or perhaps inevitably because of finite 

measuring time) nature actually produces many configurations, and the experimentalist averages 

over the values obtained. It is useful to emphasize that no matter how long the experimentalist 

measures, the configurations he sees are an incredibly small subset of those that the system is 

capable of exploring. Nature uses some very complex rules for time evolving the system from 

configuration to configuration, for example the many particle Newton or Schrödinger equations. 

These rules govern the states that the experimentalist sees, and hence the data he takes. Here’s 

one useful way to think about computer simulations: The goal of a computer simulation is to 

devise a method where the computer plays a similar role to that of nature for the experimentalist. 

That is, the computer generates configurations upon which we make measurements. This leaves 

us with the problem of devising instructions for the computer that replicate nature’s way of 

generating configurations. 

   One approach to constructing a simulation would be actually coding up the microscopic 

equations governing the system’s time evolution. Simulations of classical systems going under 

the name ‘molecular dynamics’ are actually done precisely this way. One computes the force Fn 

on each particle n, uses the force to compute the acceleration an = Fn/m, and then moves the 

velocity and position forward a small time interval dt with,  

.; dtvxxdtavv nnnnnn +→+→           

But in the spirit of statistical mechanics, we really don’t care about the microscopic time 

evolution and the paths xn(t) and vn(t) the particles take in phase space. All we really need is to 

replicate the probability P({xn, vn}) that nature uses to generate her configurations. If we can do 

that, we’ll get the same answers as the experimentalist! 

If we were doing classical statistical mechanics, the probability distribution that we 

would be attempting to emulate would be the Boltzmann distribution P({xn, vn}) =Z−1e-βE({xn,vn}). 

However, let’s discuss Monte Carlo within the context of a general probability distribution. This 

will emphasize that Monte Carlo is by no means limited to Boltzmann statistics. To make the 

notation less unwieldy, we will also label our probabilities by a single index i which will be 
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understood to represent particular values of all the degrees of freedom of the system we are 

studying (for example i could mean a collection of positions and velocities {xn, vn}). In the 

remainder of this note we will denote the inverse temperature 

by β = 1/T, and set Boltzmann’s constant to unity. As we shall see, to do Monte Carlo, we 

actually don’t need to know pi, but only ratios of pj/pi for two configurations. This is certainly an 

important point for statistical mechanics since pj/pi = e−β(Ej−Ei) is known, but the individual pi 

involve the unknown partition function Z.  

 For the purpose of this project quantum electron simulation toolbox (QUEST) has been 

used as a DQMC simulation technique. The values of the  chemical potential(µ) were varied for 

a; 4electrons on 4sites  

 

 QUANTUM ELECTRON SIMULATION TOOLBOX (QUEST) 

Quantum Electron Simulation Toolbox (QUEST) is a FORTRAN 90/95 package for 

performing determinant quantum Monte Carlo (DQMC) simulations for strongly correlated 

electron systems. Its development was motivated by a FORTRAN 77 DQMC code1 written and 

maintained by Richard Scalettar at the University of California, Davis (UCD). Currently the 

development of QUEST is led by Zhaojun Bai and Richard Scalettar at UCD. Several research 

groups have also participated the effort: Mark Jarell (Louisiana State University), Eduardo 

D’Azevedo and Thomas Maier (ORNL), Sergey Savrasov (UCD), and Karen Tomko (Ohio 

Supercomputer Center). 

In QUEST 1.0, structure of the legacy code has been modernized. In particular, BLAS 

and LAPACK numerical linear algebra libraries and new techniques such as delayed-updating 

are integrated into QUEST’s computational kernel. These developments have improved the 

efficiency of DQMC simulation and generated fruitful research applications. Recognizing the 

increasing appeal of using hybrid multicore processors and graphics processing unit (GPU) 

systems, QUEST 2.0 is released with a new optimized computational kernel designed for such 

heterogeneous multicore CPU + GPU architecture. This project presents a basic implementation 

of QUEST and describes a minimum number of input parameters required for configuring a 

DQMC simulation. The example is the 2D one-band Hubbard model on a square lattice. A 

sample input file sample.in for a 4 × 4, 6x6, 8x8 square lattices with U = 4t,6t,8t at half-filling 

and temperature β = 8t is provided. To run the simulation, simply execute the command: 
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$ ./test  sample.in  sample.out 

This will launch the simulation and redirect all standard outputs to the file sample.out. 

 

Input file 

A QUEST input file is a text file containing a collection of keywords and their values. 

Broadly speaking, QUEST keywords fall into two categories: keywords that set up the Hubbard 

Hamiltonian and those that control the dynamics of Monte Carlo simulation. Keyword value is 

specified by a single line statement: 

keyword = value 

sample input file has the following keywords 

• nx (integer): linear dimension of the lattice in the x-direction. 

• ny (integer): linear dimension of the lattice in the y-direction. 

• U (real): strength of the onsite interaction U. 

• t up (real): hopping integral for spin-↑ electrons. 

• t dn (real): hopping integral for spin-↓ electrons. 

• mu up (real): chemical potential μ↑ for spin-↑ electrons. 

• mu dn (real): chemical potential μ↑ for spin-↓ electrons. 

• L (integer): number of imaginary time slices L. In the DQMC simulation, the inverse 

temperature β is discretized into L “imaginary time” intervals β = LΔƬ 

• dtau (real): size of the imaginary time (Trotter) step ΔƬ 

• nwarm (integer): number of sweeps in the warmup (thermalization) phase. 

• npass (integer): number of sweeps in the measurement phase. 

• nbin (integer): determines the number of bins for measurement data. In the current example, 

physical observables are measured at each Monte Carlo sweep during the measurement phase. In 

order to reduce autocorrelation, QUEST groups measurement data into several bins before 

analyzing statistics. 

• seed (integer): random number seed. If seed is set to zero, QUEST will generate a seed 

automatically. The above keywords constitute a minimal set of parameters to perform DQMC 

simulation of the 2D Hubbard model. 



American Journal of Research Communication                                   www.usa-journals.com 

Sabo, et al., 2013, 1(12)                                 375                               ajrc.journal@gmail.com         

RESULTS 

The following results were obtained, for values of U = 4, T = 2, T = 1,  

T = 0.25 after varying the values of chemical potential (µ) from the range(-4,-3.8,-3.6,-

3.4,…4.0): For a 4x4 =16 sites, the results were tabulated as shown below 

 
Table 1.0: U = 4, T = 2, t = 0 

s/no µ ρ s/no µ ρ s/no µ ρ 
01 -4.0 0.4456 16 -1.0 0.8740 31 2.0 1.2771 
02 -3.8 0.4726 17 -0.8 0.8928 32 2.2 1.3051 
03 -3.6 0.4996 18 -0.6 0.9197 33 2.4 1.3329 
04 -3.4 0.5274 19 -0.4 0.9465 34 2.6 1.3610 
05 -3.2 0.5342 20 -0.2 0.9733 45 2.8 1.3902 
06 -3.0 0.5844 21  0.0 1.0000 46 3.0 1.4198 
07 -2.8 0.6129 22  0.2 1.0270 47 3.2 1.4496 
08 -2.6 0.6415 23  0.4 1.0542 38 3.4 1.4771 
09 -2.4 0.6697 24  0.6 1.0805 39 3.6 1.5050 
10 -2.2 0.6983 25  0.8 1.1089 40 3.8 1.5333 
11 -2.0 0.7261 26  1.0 1.1360 41 4.0 1.5602 
12 -1.8 0.7531 27  1.2 1.1641    
13 -1.6 0.7821 28  1.4 1.1920    
14 -1.4 0.8104 29  1.6 1.2208    
15 -1.2 0.8382 30  1.8 1.2499    
 
 

Table 1.1 U = 4, T = 1, t = 0 

 

s/no µ ρ s/no µ ρ s/no µ ρ 

01 -4.0 0.2223 16 -1.0 0.8700 31 2.0 1.3232 
02 -3.8 0.2505 17 -0.8 0.9076 32 2.2 1.3728 
03 -3.6 0.2914 18 -0.6 0.9324 33 2.4 1.4252 
04 -3.4 0.3405 19 -0.4 0.9566 34 2.6 1.4741 
05 -3.2 0.3813 20 -0.2 0.9784 45 2.8 1.5345 
06 -3.0 0.4337 21  0.0 1.0000 46 3.0 1.5703 
07 -2.8 0.4820 22  0.2 1.0238 47 3.2 1.6219 
08 -2.6 0.5287 23  0.4 1.0483 38 3.4 1.6661 
09 -2.4 0.5810 24  0.6 1.0744 39 3.6 1.7128 
10 -2.2 0.6347 25  0.8 1.1026 40 3.8 1.7552 
11 -2.0 0.6797 26  1.0 1.1329 41 4.0 1.7852 
12 -1.8 0.7271 27  1.2 1.1665    
13 -1.6 0.7670 28  1.4 1.1999    
14 -1.4 0.8035 29  1.6 1.2380    
15 -1.2 0.8359 30  1.8 1.2789    
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Table 1.2: U = 4, T = 0.25, t = 0 
 
s/no µ ρ s/no µ ρ s/no µ ρ 
01 -4.0 0.0060 16 -1.0 0.9966 31 2.0 1.3394 
02 -3.8 0.0014 17 -0.8 0.9958 32 2.2 1.5365 
03 -3.6 0.0048 18 -0.6 0.9982 33 2.4 1.7172 
04 -3.4 0.0076 19 -0.4 0.9992 34 2.6 1.8537 
05 -3.2 0.0179 20 -0.2 0.9996 35 2.8 1.9291 
06 -3.0 0.0384 21  0.0 1.0000 36 3.0 1.9772 
07 -2.8 0.0743 22  0.2 1.0005 37 3.2 1.9848 
08 -2.6 0.1541 23  0.4 1.0011 38 3.4 1.9936 
09 -2.4 0.2931 24  0.6 1.0023 39 3.6 1.9970 
10 -2.2 0.4708 25  0.8 1.0043 40 3.8 1.9990 
11 -2.0 0.6763 26  1.0 1.0160 41 4.0 2.0012 
12 -1.8 0.8053 27  1.2 1.0224    
13 -1.6 0.9094 28  1.4 1.0503    
14 -1.4 0.9532 29  1.6 1.0949    
15 -1.2 0.9803 30  1.8 1.2023    

 
 

Graphical interpretation 
The plots of ρ versus µ exhibit some of the fundamental physics of the Hubbard model, namely 
the “Mott insulating gap”. 
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Figure 1 Density as a function of chemical potential for the single site(t=0)Hubbard Model 
at U = 4 for three different temperatures. At low temperature a ‘mott plateau’ is developed. 
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At T = 0 the chemical potential has the property that µ    = ρ∂∂E . In words, µ    tells us 

how much the energy changes when we change the density of the system. If we have a 

noninteractin system described by a set of energy levels, and we have filled the levels up to some 

`Fermi energy' EF the cost to add a particle is the next energy level just above the last level we 

filled, that is, µ    = EF . If we reach a gap, a region of energy where there are no further levels 

to be filled, then µ    has to take a jump from the energy at the top of the band which has just 

been filled to the energy at the bottom of the next band. Thus a jump in µ   reflects the 

existence of a gap (and hence that our system is insulating). It turns out that even when 

interactions are turned on, and we cannot describe the system in terms of a bunch of energy 

levels, a jump in µ   still indicates the existence of a gapped, insulating phase. This is the most 

simple indication of a `Mott' insulating phase in the half-filled Hubbard model. 

Notice that at half-filling ρ = 1 when µ   = U/2.Because half-filling is so often studied, it is 

convenient to write the Hubbard Hamiltonian as, 

 

∑∑∑ ↓↑↓↑
+ +−−−+−=

j
jjj

j
ji

ji
j nnnnUCCtH )()

2
1)(

2
1(

)(
µσ

σ
σ

                (3.1)
 

This just corresponds to a shift in the chemical potential µ  by U/2. When this is done,half-

filling conveniently occurs always at µ    = 0 for any value of t; T; U. To emphasize, the 

properties of this `new' model are identical to the old one, if one compares them at the same 

density. It's just that the chemical potentials used to get those densities are offset. 

 

RESULT ANALYSIS 

Spins of electrons, align in a regular pattern with neighboring spins (on different 

sublattices) pointing in opposite directions. This is, like ferromagnetism and ferrimagnetism, a 

manifestation of ordered magnetism. Generally, antiferromagnetic order may exist at sufficiently 

low temperatures, vanishing at and above a certain temperature, the Néel temperature (named 
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after Louis Néel (1948), who had first identified this type of magnetic ordering).Above the Néel 

temperature, the material is typically paramagnetic In materials that exhibit antiferromagnetism, 

the magnetic moments of atoms or molecules, are usually related to the. 

 

 
Antiferromagnetic ordering 

 

When no external field is applied, the antiferromagnetic structure corresponds to a vanishing 

total magnetization. In an external magnetic field, a kind of ferrimagnetic behavior may be 

displayed in the antiferromagnetic phase, with the absolute value of one of the sublattice 

magnetizations differing from that of the other sublattice, resulting in a nonzero net 

magnetization. Although the net magnetization should be zero at a temperature of absolute zero, 

the effect of spin canting often causes a small net magnetization to develop, as seen for example 

in hematite. 

The magnetic susceptibility of an antiferromagnetic material typically shows a maximum 

at the Néel temperature. In contrast, at the transition between the ferromagnetic to the 

paramagnetic phases the susceptibility will diverge. In the antiferromagnetic case, a divergence 

is observed in the staggered susceptibility. 

Various microscopic (exchange) interactions between the magnetic moments or spins may lead 

to antiferromagnetic structures. In the simplest case, one may consider an Ising model on an 

bipartite lattice, e.g. the simple cubic lattice, with couplings between spins at nearest neighbor 

sites. Depending on the sign of that interaction, ferromagnetic or antiferromagnetic order will 

http://en.wikipedia.org/wiki/File:Antiferromagnetic_ordering.svg
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result. Geometrical frustration or competing ferro- and antiferromagnetic interactions may lead 

to different and, perhaps, more complicated magnetic structures. 

 

Antiferromagnetic materials 

Antiferromagnetic materials occur commonly among transition metal compounds, especially 

oxides. An example is the heavy-fermion superconductor URu2Si2. Better known examples 

include hematite, metals such as chromium, alloys such as iron manganese (FeMn), and oxides 

such as nickel oxide (NiO). There are also numerous examples among high nuclearity metal 

clusters. Organic molecules can also exhibit antiferromagnetic coupling under rare 

circumstances, as seen in radicals such as 5-dehydro-m-xylylene.                                                         

Synthetic antiferromagnets (often abbreviated by SAF) are artificial antiferromagnets 

consisting of two or more thin ferromagnetic layers separated by a nonmagnetic layer. Due to 

dipole coupling of the ferromagnetic layers which results in antiparallel alignment of the 

magnetization of the ferromagnets. Antiferromagnetism plays a crucial role in giant 

magnetoresistance, as had been discovered in 1988 by the Nobel prize winners Albert Fert and 

Peter Grünberg (awarded in 2007) using synthetic antiferromagnets.                                               

There are also examples of disordered materials (such as iron phosphate glasses) that become 

antiferromagnetic below their Néel temperature. These disordered networks 'frustrate' the 

antiparallelism of adjacent spins; i.e. it is not possible to construct a network where each spin is 

surrounded by opposite neighbour spins. It can only be determined that the average correlation of 

neighbour spins is antiferromagnetic. This type of magnetism is sometimes called 

speromagnetism. 

In numerous strongly correlated electron systems different degrees of freedom, such as 

the spin, orbitals and lattice deformations are inextricably coupled, usually by Coulomb 

interactions and the specifics of the crystal structure, but also due to alloying. Such systems are 

often characterized by competing ground states susceptible to external perturbations such as 

magnetic field, pressure or chemical doping. Tuning the external parameters may lead to a 

quantum critical point and stabilize novel ground states with exotic properties. This point is well 

illustrated in the cuprate superconductors.  
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Mott Insulators 

Mott insulators are a class of materials that should conduct electricity under conventional 

band theories, but are insulators when measured (particularly at low temperatures). This effect is 

due to electron-electron interactions which are not considered in conventional band theory. 

The bandgap in a Mott insulator exists between bands of like character, such as 3d 

character, while the bandgap in charge transfer insulators exists between anion and cation states, 

such as between O 2p and Ni 3d bands in NiO.  

Although the band theory of solids had been very successful in describing various 

electrical properties of materials, in 1937 Jan Hendrik de Boer and Evert Johannes Willem 

Verwey pointed out that a variety of transition metal oxides predicted to be conductors by band 

theory (because they have an odd number of electrons per unit cell) are insulators. Nevill Mott 

and Rudolf Peierls then (also in 1937) predicted that this anomaly can be explained by including 

interactions between electrons. 

In 1949, in particular, Mott proposed a model for NiO as an insulator, where conduction 

is based on the formula 

(Ni2+O2−)2 → Ni3+O2− + Ni1+O2−. 

In this situation, the formation of an energy gap preventing conduction can be understood 

as the competition between the Coulomb potential U between 3d electrons and the transfer 

integral t of 3d electrons between neighboring atoms (the transfer integral is a part of the tight-

binding approximation). The total energy gap is then 

Egap = U − 2zt, 

where z is the number of nearest-neighbor atoms 

In general, Mott insulators occur when the repulsive Coulomb potential U is large enough 

to create an energy gap. One of the simplest theories of Mott insulators is the 1963 Hubbard 
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model. The crossover from a metal to a Mott insulator as U is increased can be predicted within 

the so-called Dynamical Mean Field Theory. 

Mottness 

Mottness denotes the additional ingredient, aside from antiferromagnetic ordering, which is 

necessary to fully describe a Mott Insulator. In other words, we might write 

antiferromagnetic order + mottness = Mott insulator 

Thus, mottness accounts for all of the properties of Mott insulators that cannot be attributed 

simply to antiferromagnetism. 

There are a number of properties of Mott insulators, derived from both experimental and 

theoretical observations, which cannot be attributed to antiferromagnetic ordering and thus 

constitute mottness. These properties include 

• Spectral weight transfer on the Mott scale  

• Vanishing of the single particle Green function along a connected surface in momentum 

space in the first brillouin zone  

• Two sign changes of the Hall coefficient as electron doping goes from  to 

(band insulators have only one sign change at ) 

• The presence of a charge (with  the charge of an electron) boson at low energies  

• A pseudogap away from half-filling ( )  

 Compairism between QUEST Results and theoretical values 

R.T Scalettar(2007) in his work on ‘Numerical studies of disordered Tight-Binding Hamiltonian’ 
considered Strong Coupling Limit (t=0) for the non interacting Hubbard model. Each of the 
states ↑↓↓↑ ,,,0  is an eigenstate of H with eigenvalues 0, -µ, -µ, U-2µ respectively. The 
partition function is 

                 eee uHZ ββµβµβ

α

αα −− ++== ∑ 221                                                    (4.1) 

and the energy is, 
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1221 )21( −−−−− ++==+= ∑ eeeeZ uuH UHnHE ββµ

α

βµββµβ ααµ                   (4.2) 

The occupation is given by, 
122 )21)((2 −−− +++== eeee uun ββµβµββµβµρ                        (4.3) 

 
 

                    

 

Fig. 2  is a plot of ρ vs. µ for U = 4 and T = 2 T=1 and T = 0.25 and exhibits one of the 

fundamental features of the Hubbard model, namely the .Mott insulating gap. As shown in 

his work below. 

Now comparing his numerical work with the simulation results we obtain from QUEST, in both 

cases there exhibits one of the fundamental futures of the Hubbard model , namely the `Mott 

insulating gap’ . This means that In a non interacting system described by a set of energy levels, 

with levels filled up to some `Fermi energy' EF , the cost to add a particle in the next energy level 

just above the last occupied level, that is, µ = EF . The jump in µ at ρ = 1 arises from the 
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interactions: Consider a nearly empty lattice and ask the energy cost to add an electron. This cost 

need not involve U because empty sites are abundant. When one gets to halfilling, however, 

suddenly the cost to add an electron jumps by U since inevitably an added electron must sit on 

top of an electron which is already there. This sudden jump in the cost to add a particle is 

referred to as the ``Mott gap’’ Besides the plateau in ρ(µ), Mott and band gaps are characterized 

by a density of states (spectral function) which vanishes at the Fermi surface.  

 Similar jumps in µ also occur in the context of band theory, where a gap between two 

bands likewise causes µ to change discontinuously. In both cases, the jump in µ indicates the 

existence of a gapped, insulating phase. However, band and Mott insulators are very different in 

other ways. `Anderson insulators', arising from disorder, differ from both by having a finite 

N(EF). 

 

 

SUMMARY  

The physical picture for the way in which the Hubbard Hamiltonian can describe metal-

insulator transitions is simple, Imagine a half-filled lattice in which each site has one electron. In 

order for an electron to move, it will have to go onto a site which is already occupied. This costs 

an energy U. It is plausible to imagine that if U is very large, the electrons will not want to move 

at all, and one will have an Mott insulator. 

The Mott insulator can be described in a slightly more subtle way which however 

connects a bit better with one's picture of energy gaps as giving rise to insulators. Imagine a 

nearly empty lattice and asking what the energy cost is to add an electron. This cost will not 

involve U because it is easy to find a site which is empty. When one gets to half-filling, however, 

suddenly the cost to add an electron jumps by U since inevitably an added electron must sit on 

top of an electron which is already there. This sudden jump in the cost to add a particle is 

referred to as the mott gap and is similar in a way to the fact that the cost to add an electron 

jumps by some amount if there is a gap in the energy bands. It is worth noting, though, that this 
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analogy goes only so far, and the Mott gap differs in a number of very fundamental ways from 

band gaps. 

 In the half-filled sector, one elctron per site, the states with antiferromagnetic order 

(neighboring sites have electrons with opposite spins) are lower in energy than ferromagnetic 

ones (neighboring sites have parallel spins). Although this has come out of consideration of only 

two sites, it is a general feature: The Hubbard model has antiferromagnetic order at half-filling. 

Indeed, the antiferromagnetic `exchange' energy scale J = t2/U that we found is precisely the 

energy scale for this order even in the thermodynamic limit. In addition to antiferromagnetism, 

one can see the Mott gap in this little two site model by looking at the eigenvalues of the sector 

with one up and one down electron. More precisely, the eigenvalues are shifted by values 

involving the hopping t away from ±U/2. The separation U between ±U/2 is the Mott gap, and, 

as one increases t the separation becomes less and less clear. This puts a very simple quantitative 

face on the statement that when U is large one has an insulator (a Mott gap) but when U is small, 

the electrons can still move around. 

  This analysis of the two site model can be extended quite easily to somewhat larger 

lattices by writing a program which generates the matrix elements of H and diagonalizes the 

resulting matrices. In fact, this is one important way that information has been gained concerning 

the Hubbard model. Although it is limited to 10-20 sites (depending on how much computational 

effort one is willing to put up with) the results obtained are exact and any possible quantity, 

including time dependent ones, can be computed. 

 

FINDINGS 

• The plots of ρ versus µ exhibit some of the fundamental physics of the Hubbard model, 

namely the “Mott insulating gap”. 

• At T = 0 the chemical potential has the property that               .In words,    tells us how 

much the energy changes when we change the density of the system. 
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• Magnetic moments of atoms or molecules, are usually related to the spins of electrons, 

align in a regular pattern with neighboring spins (on different sublattices) pointing in 

opposite directions. 

• Generally, anti-ferromagnetic order may exist at sufficiently low temperatures, vanishing 

at and above a certain temperature, the Néel temperature (named after Louis Néel (1948). 

• Anti-ferromagnetic materials occur commonly among transition metal compounds, 

especially oxides. Better known examples include hematite, metals such as chromium, 

alloys such as iron manganese (FeMn), and oxides such as nickel oxide (NiO). 

• Mott insulators occur when the repulsive Coulomb potential U is large enough to create 

an energy gap. 

• Anti-ferromagnetic order + mottness = Mott insulator.  

 

 

CONCLUSION 

• The Hubbard model has anti-ferromagnetic order at half-filling. 

•  The Mott insulator can be described in a slightly more subtle way which however 

connects a bit better with one's picture of energy gaps as giving rise to insulators. 

• The Quantum Monte Carlo method using QUEST is faster in getting the property of mott 

insulators, than the numerical method.  
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