CANDIDATE GENE MAPPING: APPROACH, METHODS AND SIGNIFICANCE

Shivani Patel, Nirali K Patel

Department of Biotechnology, Shree M & N Virani Science College, Rajkot, Gujarat, India
360 005
smpatel@vsc.edu.in

Abstract

Candidate gene is a gene with known or assumed function that may affect genetic control of a trait and thus, can be considered a ‘candidate gene’ for this trait. The Candidate gene associates a gene to its phenotypic trait. These quantitative traits responsible may be biomedical, economical, and even evolutionary important studies. The traditional candidate gene identification is tedious due to limited information of molecular marker and, also lack of computational tools and software. However, digital candidate gene approach makes candidate gene identification reliable and rapid due to available literature database and gene ontology database. The Candidate gene mapping is successfully conducted with the identification of molecular marker, linkage map construction and Quantitative trait locus mapping. The candidate gene approach is important for determination of associated genetic variant with phenotype.

Key words: candidate gene mapping, genome architecture, candidate gene, DigiCGA, software.

INTRODUCTION

A candidate gene is located in a euchromatin region of chromosomes suspected of being involved in the expression of a trait. The candidate gene approach has proven extremely powerful for studying the genetic architecture of a complex trait. Candidate gene approach is powerful method to detect a quantitative trait locus (QTL). QTLs mapping is frequently used to identify genomic regions associated with a phenotypic trait of interest. All genes in the QTL are candidate loci for the status of quantitative trait. The essential step in candidate gene mapping is the identification of candidate gene from the genome. The identification of candidate gene can be done using either, traditional candidate gene approach or digital candidate gene approach [1]. Traditional candidate gene approaches cannot be relied on to identify all of the genes influencing a complex trait as limited information of molecular marker, and positional cloning is very laborious even it is influenced by genome size[2]. Digital candidate gene approach is widely used than traditional candidate gene approach as, it is rapid. Traditional candidate gene approach is on the basis of evidence rather than reason. Veracity of candidate gene identification is comparatively higher by digital candidate gene approach.
1.1 Candidate gene mapping
The candidate gene (CG) approach has proved to be extremely powerful for studying the genetic architecture of complex traits, as it is a far more effective and economical method for direct gene discovery [6]. The candidate gene mapping is important since candidate gene is the sequence that is known to affect the trait(s) of interest [7]. The explanation of candidate gene approach states that a major component of quantitative genetic variation of phenotype is caused by functional mutation of a putative gene [6]. A putative gene is a piece of DNA thought to be a gene based on sequence (ex. Open Reading Frame) whose functional gene product i.e. the expressed protein is unknown. The candidate gene mapping approach is one of the most important studies for the genetic control of a given quantitative trait. Quantitative trait is a continuously varying, measurable character, affected by the variation present in one to numerous genes in combination with environmental variation. The CG approach consists of three chronological steps. First, CGs are proposed based on molecular and physiological studies (functional CGs) or based on linkage data of the locus being characterized (all closely linked genes may be positional CGs). Second, a molecular polymorphism must be revealed to localize the CGs on a genetic linkage map to look for genetic linkage between the CG markers and the loci being characterized, or to calculate statistical correlations between CG polymorphisms and phenotypic variation in a set of genealogically unrelated individuals. It is important to notice that these two strategies are fundamentally identical and can be conducted together or successively [4]. Third, if map co-segregation and/or statistical correlation have been found, complementary experiments must be conducted to confirm the actual involvement of the CG in the trait variation. This is the validation step [5].

1.2 Positional candidate gene approach
Positional candidate gene approach involves integrated genome scan and candidate gene analyses, in which identification of candidate gene is mainly based on physical linkage [7]. This physical linkage maps provide the exact location of genes or genetic markers on chromosomes [8]. The Positional candidate gene identifies a gene within the vicinity of QTLs [9]. The Positional candidate gene approach works on two different pedestals such as sequence comparison (QTLs mapping) and expression data (microarray). The positional candidate gene approach has been reported in different fields including the classical examples of DGAT1 in cattle, GDF8 in sheep [10][11][12]. When applying the position-dependent strategy, it is difficult to prioritize functional candidates harboured in the targeted region, which is frequently scanned through the microsatellites markers [6]. In positional candidate gene approach a sequence comparison gives a better success with smaller confidence interval about QTLs [14].

1.3 Functional candidate gene approach
The functional candidate gene approach work on identification of trait associated with expressed gene [9]. In functional candidate gene approach putative candidate genes are statistically detected from the genes controlling large components of inheritable gene expression variation. To date, some researchers began to consider or use this approach for seeking candidate genes in different fields. For instance, by using this strategy, functional candidate genes for “eye muscle area” in pigs were identified [15]. The genetic analysis of variation in gene expression would provide valuable models for studying complex and quantitative traits [16]. In general, important biological features of traits are directly reflected by transcript pattern, and quantitative traits are usually the consequence of the structure of genetic regulatory networks and parameters that control the dynamics of these networks [17].

The rationale of function-dependent strategy states that the genes responsible for the variation of gene expression process are also responsible for the variation of trait, and the candidate
gene governing the major genetic component of trait variation can be mined from the pattern of gene expression profiles. In fact, gene expression profiles are increasingly analyzed in the search for candidate genes [18].

1.4 Digital candidate gene approach.
The most advanced approach for identification of candidate gene is digital candidate gene approach, usually denoted by DigiCGA. DigiCGA is product of bioinformatics. DigiCGA also known as an *insilico* candidate gene approach or computer facilitated candidate gene approach. The completion of animal genome projects have revealed a multitude of potential avenues for identifying candidate genes in which digital approach is an important one that enables the systematic identification of genes underlying biological traits [19]. Gene functional similarity search tool (GFSST) is a digital resource that makes it possible to identify candidates by certain principles, e.g., functional similarity. Functional similarity based on Gene Ontology (GO) annotation is used in diverse applications like gene clustering, gene expression data analysis, protein interaction, prediction and evaluation. [20]. The Gene ontology is a major bioinformatics initiative to unify the representation of gene and gene product attributes across all species [33]. The DigiCGA can be classified into three different approaches. The ontology based approach uses gene functional information from biological ontology sources available through internet. The computational based approach works on many statistical algorithms and computational methods, which includes data mining [21], Hidden Markova analysis [22], cluster analysis [23], and, kernel based data fusion analysis [24]. The integrated identification approach is integration of more than one method including web data based resources like literature based resources, biological ontology resources [25] and molecular interaction principles.

Table 1 List of software and online tools use for digital candidate gene approach

<table>
<thead>
<tr>
<th>NO</th>
<th>Name</th>
<th>Website</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GeneSeeker</td>
<td>http://www.cmbi.ru.nl/GeneSeeker/</td>
</tr>
<tr>
<td>2</td>
<td>GFSST</td>
<td>http://gfsst.nci.nih.gov</td>
</tr>
<tr>
<td>3</td>
<td>Endeavour</td>
<td>http://www.esat.kuleuven.be/endeavour</td>
</tr>
<tr>
<td>4</td>
<td>G2D</td>
<td>http://www.ogic.ca/projects/g2d_2/</td>
</tr>
<tr>
<td>5</td>
<td>SUSPECTS</td>
<td>http://www.genetics.med.ed.ac.uk/suspects/</td>
</tr>
<tr>
<td>6</td>
<td>TOM</td>
<td>http://www.micrel.deis.unibo.it/~tom/</td>
</tr>
<tr>
<td>7</td>
<td>BioMercator</td>
<td>http://moulon.inra.fr/~bioinfo/BioMercator</td>
</tr>
<tr>
<td>8</td>
<td>FunMap</td>
<td>http://www.bionformatics.polimi.it/GFINDER/</td>
</tr>
<tr>
<td>9</td>
<td>PROSPECTR</td>
<td>http://www.genetics.med.ed.ac.uk/prospectr/</td>
</tr>
<tr>
<td>10</td>
<td>QTL Mixer</td>
<td>http://qtl.pzr.uni-rostock.de/qtlmix.php</td>
</tr>
<tr>
<td>11</td>
<td>CoGenT++</td>
<td>http://cgg.ebi.ac.uk/cogentpp.html</td>
</tr>
<tr>
<td>12</td>
<td>KNN classifier</td>
<td>available on request: jianzxu@hotmail.com</td>
</tr>
</tbody>
</table>

STEPS FOR CANDIDATE GENE MAPPING
The development of expressed sequence tag (EST) markers, help in candidate and comparative gene mapping.
The various steps involved in candidate gene mapping are:
 Step1: Collection of mapping population
 Step2: Phenotypic measurements
Step 3: Collection of genotypic data using restriction fragment length polymorphism (RFLP) and expressed sequence tag (EST)

Step 4: Homologue detection

Step 5: Linkage map construction and statistical analysis. The genetic linkage map can be constructed using JOIN MAP version 3.0 (Stam 1993) [28]. The Kosambi estimation method was used to convert recombination frequencies to map distances in centi Morgans (cM). The molecular map was drawn with Map chart version 2.1 (Voorrips 2002) [30]. The linkage map was constructed using MAPMAKER, version 3.0 (Lander et al. 1987) [31]. The initial scan for QTL was done with MAPMAKER/QTL 1.1 (Lincoln et al. 1992).

CONCLUSION

Classically, a link between a gene and a quantitative trait can be hypothesized based on linkage information [32]. Completion of genome sequences and improved bioinformatics could facilitate in silico cross-matching of candidate sequences with QTLs. The creation of more powerful bioinformatics tools for gene annotation could facilitate the choice of functional candidates among and outside the positional candidate genes [33]. The CG approach has been used with success in human genetics, animal genetics [34] and in plant genetics [36][4]. The candidate gene approach is applicable to traits related to the metabolism (enzyme activities and substrate levels) [35]. Candidate gene is used to determine a phenotype of genetic trait. The candidate gene mapping is possible through identification of candidate gene applying the candidate gene approaches. The combination of positional and functional candidate gene approaches represents a helpful prerequisite for cloning the candidate genes [9]. The candidate gene approach has been shown to efficiently characterize QTLsin plants [37].

REFERENCES

7. Brian Kinghorn, Positional cloning, candidate genes, synteny/comparative mapping, University of New England
8. Konstantin V. Krutovskii and David B. Neale,(2001)Forest Genomics for conserving adaptive genetic diversity, Food and Agriculture Organization of the United Nations,

31. Lander, E. S., P. Green, J. Abrahamson, A. Barlow and M. J. Daly (1987) MAPMAKER: an interactive computer package for con,