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ABSTRACT		
	
Metals	are	being	utilized	of	ways	in	industries	and	agriculture;	particularly	heavy	metals	

such	as	Mercury,	Lead,	Arsenic	and	Cadmium	constitute	a	significant	potential	threat	to	

human	health	because	they	are	associated	to	many	adverse	effects	on	health.	Due	to	the	

increasing	pollution,	 concentrations	of	various	 chemical	 compounds	have	 increased	 in	

aquatic	environments.	Water	contaminants	have	a	high	potential	 risk	 for	 the	health	of	

populations	 and	 protection	 from	 toxic	 effects	 of	 environmental	 aquatic	 pollutants	

primarily	involves	considering	the	mechanism	of	low	level	toxicity	and	likely	biological	

effects	 in	 organisms	 who	 live	 in	 these	 polluted	 waters.	 Fish	 have	 the	 ability	 to	

accumulate	heavy	metal	in	their	tissues.	Therefore	the	intake	of	fish	should	be	regulated;	

information	regarding	the	species	of	fish	consumed	and	its	possible	levels	of	content	of	

heavy	metals	 can	 be	 of	 benefit	 to	 diminish	 the	 hazard	 to	 public	 health.	 In	 this	 mini‐

review	we	 aimed	 to	 bring	 the	main	 work	 on	 the	 harmful	 effects	 of	 cadmium	 on	 fish	

through	 its	 accumulation	 in	 the	 tissues,	 the	main	 histological	 changes	 encountered	 in	

fish	as	well	as	the	detoxifying	systems	against	the	toxicity	of	this	metal.	
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1.	Intro

Annabi,	et	al.,	2013:	Vol	1	(4)																																																													ajrc.journal@gmail.com 60

duction	

Aquatic	pollution	by	organic	and	metal	chemicals	(inorganic)	has	been	identified	

as	one	of	the	most	important	factors	in	the	poisoning	of	marine	organisms,	such	as	fish	
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(Al‐Ghais,	 1995).	 Non‐essential	 metals,	 such	 as	 mercury,	 lead	 and	 cadmium,	 are	 not	

known	 to	 play	 any	metabolic	 function	 and	 can	 be	 toxic	 for	 humans,	 even	 at	 very	 low	

concentrations	 (Belitz	 and	Grosch,	 1999).	 Pollutants	 originating	 from	 the	discharge	of	

waste,	 specialized	 industries	or	mining	activities	are	 thought	 to	be	responsible	 for	 the	

reduction	 of	 fish	 resources	 in	 estuaries	 and	 coastal	 waters.	 In	 addition,	 coastal	 areas	

constitute	nurseries,	essential	habitats	for	juvenile	fish.	

Heavy	metals	 (essentially	mercury,	 cadmium	 and	 lead)	 are	 toxic	 elements	 that	

can	 be	 assimilated,	 stored	 and	 accumulated	 by	 organisms,	 through	 the	 food	 chain,	

resulting	in	physiological	damage	(Pigott	and	Tucker,	1990;	Ruiter,	1995).	Cadmium	as	a	

toxic	 element	might	 be	 a	 stressor	 agent	 for	 fish.	 Cadmium	 exposure	may	 lead	 to	 the	

results	 of	 some	 pathophysiological	 damages	 including	 growth	 rate	 reduction	 in	 fish	

(Kaviraj	and	Ghosal,	1997;	Hansen	et	al.,	2002)	and	also	in	other	aquatic	organisms	(Das	

and	Khangarot,	2010).	 In	order	 to	protect	 aquatic	wildlife,	 it	 is	 therefore	necessary	 to	

determine	 contamination	 levels	 and	water	 quality	 criteria.	 Chemical	 biomonitoring	 is	

often	 combined	 with	 evaluation	 of	 biomarkers	 that	 represent	 early	 indications	 of	

biological	effects.	During	the	past	two	decades,	increasing	emphasis	has	been	placed	on	

the	need	to	develop	physiological,	biochemical,	and	molecular	biomarkers	that	provide	

indicators	of	stress	on	organisms	exposed	to	toxicants	in	the	environment.	However,	in	

order	 to	 be	 ecologically	 relevant,	 these	 biomarkers	 must	 be	 linked	 to	 higher‐level	

processes	 that	 reflect	 effects	 at	 the	 population	 and	 community	 levels	 of	 organization.	

The	 measurement	 of	 metabolic	 rate	 represents	 a	 useful	 indicator	 of	 environmental	

stress	because	 it	 reflects	both	 the	energetic	demands	of	 lower‐level	processes	and	 the	

availability	of	ingested	energy	that	can	be	partitioned	for	growth	and	reproduction	(Wu	

et	al.,	2012).		

For	this	purpose,	one	of	the	aims	of	aquatic	toxicology	is	to	elucidate	the	subtler	

and	most	pronounced	alterations	induced	by	pollutants	on	aquatic	organisms	and	their	

environment.	In	this	way,	we	tend	in	this	mini‐review	to	resume	the	major	toxic	effects	

of	 cadmium	 following	 the	 bioaccumulation	 in	 tissues,	 histolopatholigical	 studies	 and	

detoxification	mechanisms	in	fish.	

	

2.	Bioa

Annabi,	et	al.,	2013:	Vol	1	(4)																																																													ajrc.journal@gmail.com 61

ccumulation	of	Cd	in	fish	Tissues	

Toxic	elements	such	as	heavy	metal	are	known	to	bioaccumulate	in	the	tissues	of	

fish,	marine	mammals	 and	 seafood.	 In	 particular,	 the	 bioaccumulation	 of	 Cd,	 Arsenic,	
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Manganese,	Mercury,	and	Lead	in	the	trophic	food	chain	is	cause	of	concern	since	they	

can	have	deleterious	effects	on	human	health	(Ersoy	and	Celik,	2009;	Jarup	and	Akesson,	

2009).	Furthermore,	fish	and	seafood	are	one	of	the	main	links	between	the	heavy	metal	

present	in	the	environment	and	the	human	exposure	(Verbeke	et	al.,	2005;	Burger	and	

Gochfeld,	2009;	Fraser	 et	 al.,	 2012).	Under	natural	 exposure	 conditions,	 	 prediction	of	

toxic	 effects	 based	 on	 environmental	 or	 tissues	 concentrations	 remains	 difficult	while	

many	 studies	 have	 examined	 the	 relationship	 between	metal	 exposure,	 accumulation	

and	toxicity	under	laboratory	conditions	(Peakall	and	Burger,	2003;	Vijver	et	al.,	2004).	

A	growing	number	of	evidence	has	shown	that	several	factors	influence	Cd	accumulation	

in	fish	tissues.	These	factors	include	the	environmental	metal	concentration	and	time	of	

exposure.	 It	 should	 be	 noted	 that	 several	 authors	 showed	 that	 animals	 tissues,	

contaminated	 in	 the	 laboratory,	 accumulate	 heavy	 metals	 in	 a	 concentration	 and	

contamination	 period	 dependent	 manner	 (Roméo	 et	 al.,	 1999;	 McGeer	 et	 al.,	 2000;	

Francis	et	al.,	2004).	Fish	have	the	ability	to	accumulate	heavy	metal	in	their	tissues	by	

the	 absorption	 along	 the	 gill	 surface	 and	 gut	 tract	wall	 to	 higher	 levels	 than	 the	 toxic	

concentration	in	their	environment	(Chevreuil	et	al.,	1995).		

Skin	 and,	 especially,	 gills	 are	 the	 likely	 primary	 entry	 point	 of	 waterborne	 Cd,	

which	is	in	accordance	with	the	absence	of	lesions	in	the	digestive	tract,	well	known	to	

be	 impacted	 in	 fish	exposed	 to	 the	metal	 via	 food	 items	 (Berntssen	et	 al.,	 2001),	 even	

though	 changes	 to	 intestine	 epithelia	 have	 also	 been	 found	 in	 fish	 exposed	 to	 high	

concentrations	of	waterborne	Cd	(Giari	et	al.,	2007;	Isani	et	al.,	2009).	Iger	et	al.	(1994)	

described	 a	 series	 of	 both	 dermic	 and	 epidermal	 alterations	 (from	necrotic	 pavement	

epithelium	to	fibrous	tissue	alterations)	in	Cyprinus	carpio	L.,	without	an	obvious	dose‐

effect	 relationship	 at	 earlier	 stages	 of	 exposure.	 Handy	 (1992),	 described	 reduced	 Cd	

bioaccumulation	in	skin	compared	to	liver,	kidney	and	especially	gills,	where	highest	Cd	

concentrations	were	observed,	in	trouts,	but	the	gills	were	found	to	be	the	most	efficient	

organ	 detoxifying	 the	metal	 (Costa	 et	 al.,	 2012).	Moreover,	 it	was	 reported	 that	 Cd	 is	

rarely	 distributed	 uniformly	 within	 the	 fish	 body	 tissues,	 and	 it	 is	 nevertheless	

accumulated	by	particular	target	organs	(Surech	et	al.,	1993).		

Several	past	studies	investigated	Cd	accumulation	and	its	distribution	in	organs.	

However,	accumulated	levels	among	organs	differed	following	different	treatment	doses	

of	Cd2+	and	exposure	times	(Wu	et	al.,	1999).	The	metal	ion	usually	accumulated	less	in	

gills	 since	 they	 are	 a	 temporary	 target	 organ	 of	 Cd	 accumulation,	 and	 then	 Cd	 is	
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transferred	 to	 digestive	 and	 reproductive	 organs	 (Wu	 et	 al.,	 2007).	 Thus,	 the	

accumulation	of	Cd	in	ovaries	was	similar	to	those	in	kidneys,	intestines,	and	liver	after	

Cd	exposure	(Cattani	et	al.,	1996;	Wu	et	al.,	2012).	Cd	accumulate	in	the	gonadal	tissues	

of	fish,	reaching	a	concentration	of	up	to	1000‐fold	higher	than	in	the	surrounding	water	

environment	 and	 becoming	 extremely	 harmful	 for	 reproduction	 (Kime	 et	 al.,	 1996;	

Dietrich	 et	 al.,	 2011).	 In	 addition,	 fish	 sperm	 may	 be	 exposed	 to	 Cd	 through	

bioaccumulation	in	the	testis	(Kime,	1995).	

Fish	exposed	to	the	highest	dose	of	Cd	experienced	a	significant	accumulation	of	

the	metal	in	liver	and	brain	tissue.	Vetillard	and	Bailhache	(2005), showed	that Cd	levels	

found	 in	 liver	 follow	 the	predictive	 linear	pattern	of	metal	 accumulation	 in	 this	 tissue	

(Lange	 et	 al.,	 2002)	 and	 agree	with	 observations	 on	 trout	 coming	 from	 contaminated	

rivers	(Olsvik	et	al.,	2000).	Cd	not	only	accumulated	in	the	liver	but	was	also	increased	in	

the	brain,	even	if	levels	were	far	lower	than	those	found	in	the	liver.	Accumulation	in	the	

brain	 seems	 to	 be	 dependent	 on	 the	 administration	 route.	 Oral	 treatments	 failed	 to	

induce	any	significant	increase	in	trout	(Melgar	et	al.,	1997),	but	Cd	has	been	shown	to	

be	taken	up	by	olfactory	epithelium	and	transported	to	the	brain	in	pikes	(Tallkvist	et	al.,	

2002),	 a	 route	 that	 could	 fit	 with	 the	 waterborne	 exposition.	 	 After	 waterborne	

exposure,	Cd	accumulated	in	the	olfactory	rosettes,	nerves,	and	bulbs	 in	rainbow	trout	

but	not	in	the	brain	(Scott	et	al.,	2003;	Vetillard	and	Bailhache,	2005).	De	Conto	Cinier	et	

al.	 (1997)	stated	on	Cd	uptake	 in	 fish	 liver	and	kidney	can	be	divided	 into	two	groups	

according	to	the	presence	or	absence	of	a	plateau	in	the	Cd	accumulation	kinetic	curves.	

Entry	of	heavy	metals	into	the	organs	of	a	fish	mainly	takes	place	by	the	adsorption	and	

absorption	 and	 the	 rate	 of	 accumulation	 is	 a	 function	 of	 uptake	 and	 depuration	 rates	

(Sreedevi	et	al.,	1992).	McDonald	and	Wood	(1993),	suggest	that,	after	the	initial	shock	

phase	 of	 metal	 exposure,	 fish	 physiologically	 adapts	 to	 compensate	 for	 ion	 losses	 by	

secreting	mucus	and	altering	gill	structure	at	the	cellular	and	subcellular	level.		

Reynders		et	al.	(2008)	report	that	on	the	tissue	level,	highest	Cd	concentrations	

were	observed	in	kidneys	of	carp	(Cyprinus	carpio)	and	roach	(Rutilus	Rutilus),	followed	

by	 gills,	 intestine	 and	 liver,	 while	 low	 concentrations	 were	 observed	 in	 carcass	 and	

muscle.	 Accumulation	 and	 toxicity	 under	 laboratory	 conditions,	 prediction	 of	 toxic	

effects	based	on	environmental	or	tissues	concentrations	remains	difficult	under	natural	

exposure	 conditions	 (Peakall	 and	 Burger,	 2003;	 Vijver	 et	 al.,	 2004).	 Increased	 Cd	

concentrations	in	gills	and	intestine	probably	reflected	the	source	of	metals	uptake	from	
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water	 and	 food,	 since	 gills	 generally	 accumulate	 much	 higher	 metal	 concentrations	

during	 waterborne	 exposure,	 while	 intestine	 accumulate	 metal	 following	 dietary	

exposure	(Chowdhury	et	al.,	2004).		

In	Cd	accumulation,	plateaus	have	been	reported	in	liver	and	kidney	of	zebrafish	

(Danio	rerio)	after	2	or	3	months	(Rehwoldt	and	Karimian‐Teherani,	1976)	and	in	one‐

summer‐old	 carp	 (Cyprinus	 carpio)	 exposed	 to	 Cd	 (De	 Conto	 Cinier	 et	 al.,	 1997).	

Continuing	 accumulation	 of	 Cd	 has	 been	 observed	 in	 rainbow	 trout	 (Oncorhynchus	

mykiss)	exposed	 for	178	days	 (Giles,	1988).	However,	a	 reduction	of	accumulation	has	

been	reported	in	many	other	taxonomic	groups	as	a	physiological	mechanism	for	metal	

resistance	 and	 adaptation	 (Hall	 et	 al.,	 1979;	 Bariaud	 et	 al.,	 1985;	 Tsuchiya	 and	 Ochi,	

1994;	Yanagiya	et	al.,	1999).	

	

3.	Hist S eopathological	 tudi s		

Teleosts	 have	 long	 been	 targeted	 in	 toxicological	 studies	 involving	 aquatic	

pollutants	due	to	their	ecological	relevance,	availability	and	ability	to	act	as	surrogates	

for	 higher	 vertebrates.	 These	 studies	 involved	 either	 collecting	 feral	 animals	 or	

bioassays	with	locally	exposed	(caged)	animals	or	even	laboratory	bioassays	to	test	the	

toxicity	of	single	or	combined	substances.	In	either	case,	histopathological	assessment	in	

fish	as	long	been	recognized	as	a	highly	valuable	tool	to	identify	the	toxicopathic	effects	

of	 substances	 since	 it	may	 better	 reflect	 the	 true	 health	 condition	 of	 the	 animal	 than	

other	biomarker/diagnosis	methods	(Au,	2004).			

Still,	 fish	 histopathology	 is	 far	 to	 be	 as	 standardized,	 with	 respect	 to	 lesion	

detailing,	 identification	 and	 nomenclature,	 as	 in	 higher	 vertebrates	 (i.e.	 mammals,	

including	 humans),	 to	 which	 are	 added	 difficulties	 in	 establishing	 cause‐effect	

relationships	 and	 the	 lack	 of	 specificity	 of	 most	 biomarker	 candidates.	 Furthermore,	

there	are	yet	few	studies	with	fish	exposed	to	environmentally	realistic	concentrations	

of	waterborne	Cd	and	even	fewer	concerning	histopathology.	Giari	et	al.	(2007)	reported	

conclusive	 histopathological	 alterations	 in	 multiple	 organs	 of	 Dicentrarchus	 labrax	

exposed	to	waterborne	Cd.	In	the	few	bioassay‐based	studies	performed	with	fish	within	

this	 range	 of	 contamination,	 Lizardo‐Daudt	 and	 Kennedy	 (2008)	 found	 Cd‐induced	

hatching	 and	 developmental	 abnormities	 in	 rainbow	 trouts	 (Oncorhynchus	 Mykiss)	

exposed	for	28	days.	In	another	study,	Faucher	et	al.	(2008)	found	that	exposure	to	Cd	
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could	 alter	 the	 escape	behaviour	 of	Dicentrarchus	 labrax,	 presumably	 by	 affecting	 the	

lateral	line	system.		

Cd	 is	 long	 known	 to	 disrupt	 hepatic	 carbohydrate	 metabolism,	 leading	 to	 a	

decrease	in	glycogen	storage	and	increased	plasma	glucose,	as	observed	by	Soengas	et	

al.	 (1996)	 in	 Atlantic	 salmon	 (Salmo	 salar	 L.).	 Gills	 were	 more	 prone	 to	 acquire	

histopathological	 lesions	 than	 skin	 as	 a	 result	 of	 exposure	 to	 low	 Cd	 concentrations,	

which	should	 indicate	differential	 response	and	defense	mechanisms	between	 the	 two	

organs.	 Regarding	 these,	 changes	 to	 skin	 goblet	 cell	 (size,	 distribution	 and	 chemical	

composition)	 as	 a	 consequence	 of	 external	 insult	 have	 already	 been	 reported.	 A	

reduction	 in	 skin	 goblet	 cell	 size	 in	 fish,	 including	 flatfish,	 has	 already	 been	 found	 to	

occur	as	a	result	of	different	factors,	from	bacterial	infections	(Yamamoto	et	al.,	2011)	to	

exposure	to	sediment	bound	contaminants	(Mézin	and	Hale,	2000).	The	gill	epithelium	

is	the	main	apical	entry	surface	for	waterborne	contaminants	in	fish.	Although	variable,	

Costa	 et	 al.	 (2012)	 found	 a	 trend	 to	 increase	 changes	 to	 gill	 epithelia	with	 increasing	

concentrations	 of	 Cd,	 with	 especially	 regard	 to	 chloride	 cell	 hypertrophy	 by	

intraplasmatic	fluid	retention,	an	alteration	that	is	likely	to	compromise	ion	excretion,	a	

crucial t al	osmotic	balance.	physiological	process	in	marine	fish	to	maintain	in ern 	

The	 histopathological	 changes	 observed	 occur	 in	 a	 progressive	 time‐	 and	

concentration‐related	series:	organs	that	 form	the	organism‐water	boundary	(gills	and	

skin)	were	the	least	affected,	followed	by	the	spleen,	trunk	kidney	and	finally	the	liver	as	

the	 most	 affected.	 The	 differences	 in	 the	 severity	 and	 the	 dissemination	 degree	 of	

histopathological	 lesions	 and	 alterations	 are	 a	 probable	 function	 of	 tissue‐species	

defenses	 and	 sensitivity.	 Interestingly,	 the	mechanisms	 of	 Cd	 translocation	within	 the	

organism,	 from	water	 to	 gills,	 then	 to	 blood	which	 conveys	 the	metal	 to	 other	 organs	

(especially	 the	 liver	 followed	by	 the	kidney	and	the	spleen)	 is	 likely	 impacted	through	

the	recycling	of	Cd‐affected	blood	cells.	By	its	turn,	the	kidney	is	impacted	especially	by	

the	impairment	of	tubular	active	transport,	as	in	gill	chloride	cells	(van	Kerkhove	et	al.,	

2010).	 Additionally,	 these	 data	 indicate	 that,	 although	 no	 specific	 biomarkers	 of	

exposure	to	Cd	could	be	distinctively	pin‐pointed,	 the	analyses	of	multiple	organs	may	

reveal	an	histopathological	pattern.	This	pattern	could	be	an	 indicative	of	exposure	 to	

low	 concentrations	 of	 a	 toxic	 metal	 that	 include	 identifiable	 traits	 (such	 as	 focal	 cell	

death,	 inflammation),	 changes	 that	 reveal	 alterations	 to	 carbohydrate	metabolism	 (as	

glycogen	 depletion	 and	 lipidosis),	 osmotic	 balance	 impairment	 (inferred	 from	 gill	
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chloride	cell	hypertrophy	and	kidney	tubule	 lesions)	and	skin	goblet	cell	engorgement	

revealing	increased	mucous	production	as	a	response/defense	mechanism.	Overall,	the	

histopathological	 lesions	 and	 alterations	 observed	 are	 consistent	with	 chronic	disease	

and	may	be	surveyed	in	future	research	for	qualitative	or	semi	quantitative	assessment	

(as	histopathological	 indices)	of	metal‐induced	 injury	either	 in	 the	 laboratory	or,	most	

importantly,	 in	 field	 studies,	where	 low	 background	 levels	 of	 Cd	 contamination	 apply	

(Costa	et	al.,	2012).		

Although	 it	 is	 generally	 considered	 that	 Cd	 is	 primarily	 nephrotoxic	 and	 then	

hepatotoxic	as	a	consequence	of	chronic	exposure	(Nordberg,	2009;	Nawrot	et	al.,	2010),	

Costa	et	al.	(2012)	reported	that	the	liver	sustained	histological	lesions	and	alterations	

more	 clearly	 relatable	 to	 Cd	 concentration	 and	 time	 of	 exposure.	 The	 alterations	

correspond	 especially	 to	 inflammation‐related	 responses	 (as	 hyperaemia	 and	

macrophage	intrusion).	Direct	lesions	such	as	necrosis	had	a	low	prevalence,	although	a	

trend	to	increase	with	time	and	concentration	of	exposure	was	identified,	showing	that	

exposure	 to	 low	 concentrations	 of	 this	 toxic	 metal	 may	 in	 fact	 elicit	 chronic	 hepatic	

damage	to	juvenile	Solea	senegalensis.		

According	to	our	laboratory	exposure	of	Gambusia	affinis	to	Cd,	histopathological	

investigations	 revealed	 greater	 changes	 in	 gills,	 kidney	 and	 liver	 tissues	 after	 chronic	

exposure	 than	 those	 recorded	 during	 acute	 Cd	 exposure	 (Annabi	 et	 al.,	 2011).	 The	

changes	in	gills	were	characterized	by	epithelial	lifting,	total	and	partial	lamellar	fusion,	

epithelial	necrosis	as	well	as	telangiectasis.	In	kidney	tissue,	necrosis	of	epithelial	cells	of	

renal	tubules,	glomerular	contraction	and	reduction	of	Bowman’s	space	were	observed	

in	 exposed	 fish.	 In	 addition,	 the	 liver	 hepatocytes	 showed	 cytoplasmic	 vacuolization	

with	 lipid	droplets	 and	glycogen	accumulation.	 Congestion	of	 the	hepatic	 central	 vein,	

desquamation	of	hepatic	 tissue	and	an	 increase	 in	sinusoidal	space	were	also	noted	 in	

the	liver	tissue.		

	

4.	Metallothioneins	and	detoxification	mechanism	

Metal	homeostasis	has	to	be	carefully	regulated	by	the	cell	to	prevent	production	

of	 toxic	 free	 radicals	 (Radisky	 and	 Kaplan,	 1999),	 thus	 triggering	 oxidative	 stress.	

Metallothioneins	(MTs)	 is	a	 low‐molecular‐weight	metal	binding	protein	and	 is	known	

to	play	an	important	role	in	protection	against	heavy	metal	toxicity.	MTs	is	known	to	be	

a	protein	involved	in	protection	against	oxidative	stress	(Andrews,	2000;	Gourgou	et	al.,	
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2010),	including	heat‐induced	stress	(Ivanina	et	al.,	2009;	Guinot	et	al.,	2012).	A	possible	

role	 for	MT	 in	 the	 oxidative	 stress	 reaction	 has	 also	 been	 documented	 (Manuel	 et	 al.,	

1992).	 It	 has	been	 shown	 to	be	an	effective	 free	 radical	 scavenger,	 important	because	

the	 release	 of	 various	 species	 of	 oxygen	 metabolites	 is	 thought	 to	 be	 indirectly	

responsible	for	the	initiation	of	apoptosis.	However,	MTs	has	itself	been	implicated	as	a	

causal	 factor	 in	apoptosis	 (King	et	al.,	1997),	and	has	 intrinsically	 toxic	effects	 in	 itself	

when	bound	to	Cd	(Sabolic	et	al.,	2002;	Thompson	and	Bannigan,	2008).	In	addition	to	

the	 detoxification	 of	 toxic	 metals	 such	 as	 Cd,	 MTs	 is	 involved	 in	 the	 maintenance	 of	

homeostasis	of	essential	trace	elements	such	as	Zinc	and	Copper	(Coyle	et	al.,	2002).	Its	

role	in	the	protection	against	xenobiotics	or	in	the	cellular	protection	against	oxidative	

stress	should	be	underlined	(Coyle	et	al.,	2002).	Although	its	synthesis	is	related	to	the	

metal	exposure,	its	levels	can	be	affected	by	endogenous	and	exogenous	factors	such	as	

the	reproductive	cycle	or	the	temperature	(Van	Cleef‐Toedt	et	al.,	2001).	Furthermore,	

variations	in	the	water	temperature	could	directly	or	indirectly	modify	the	behavior	of	

this	 protein	 as	 regards	 the	 bioaccumulation	 of	 metals,	 as	 well	 as	 its	 participation	 in	

toxicokinetic	processes	(Gorbi	et	al.,	2005;	Baykan	et	al.,	2007;	Guinot	et	al.,	2012).	The	

effect	of	temperature	on	MTs	levels	in	liver	could	be	a	direct	thermal	response,	or	may	

be	related	to	the	increase	in	metal	content.	MTs	synthesis	is	considered	one	of	the	best‐

known	biochemical	detoxification	mechanisms	for	metal	and	it	is	widely	demonstrated	

that	 its	 induction	 may	 be	 influenced	 by	 metal	 contamination.	 There	 are	 only	 a	 few	

studies	especially	designed	for	elucidating	the	effect	of	temperature	on	MTs	synthesis	in	

fish	and	it	is	very	common	to	try	to	relate	seasonal	variability	to	temperature,	but	in	this	

case	the	reproductive	state	may	also	be	involved	(Gorbi	et	al.,	2005).	Van	Cleef‐Toedt	et	

al.	 (2001)	 demonstrated	 that	 non‐spawning	 Fundulus	 heteroclitus	 exposed	 to	 thermal	

stress	 exhibited	 significantly	 elevated	 liver,	 gill,	 and	 intestine	 MT‐	 mRNA	 expression	

compared	with	controls.	Riggio	et	al.	 (2003)	 reported	 that	after	exposure	of	Zebrafish	

(Danio	rerio)	with	Cd,	the	MTs	content	increased	around	30‐fold,	and	MTs	synthesis	was	

induced	 in	 oocytes	 during	 vitellogenesis	 and	 at	 the	 blastula	 stage	 of	 embryos.	

	Previous	reported	data	 that	 the	 rate	 of	 Mt‐mRNA	 in	 the	 liver	 of	different	 species	are	

sensitive	 to	 acute	 contamination,	 but	 not	 to	 chronic	 exposure	(Quirós	 et	 al.,	 2007;	

Navarro	et	al.,	2009).	Wangsongsak	et	al.	(2007)	showed	that	the	hepatic	expression	of	

Mts‐mRNA	 increases	 significantly	 after	the	exposure	 of	Puntius	 gonionotus	to	 three	

increasing	 amounts	 of	 Cd	 (0.012,	 0.06	 and	 0.12	 mg/L).	 This	 increase	
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remains	significantly	 important	 in	 the	 liver	 during	 the	 first	 14	 days	 of	 exposure.	

However,	 in	 the	 renal	 tissue,	 the	 most	 important	 expression	 levels	 of	 mRNA‐Mt	was	

noticed	 after	 28	 days.	 In	 the	 same	 context,	 Hollis	 et	 al.	 (2001)	 demonstrated	 that	 Cd	

induced,	at	low	concentrations	(0.012	and	0.06	mg/L),	an	important	expression	level	of	

MTs	in	the	liver	tissue	compared	to	the	kidney.	Nevertheless,	Wangsongsak	et	al.	(2007)	

reported	that,	at	the	highest	concentration	of	Cd	(0.12	mg/L),	the	expression	of	MTs	was	

higher	 in	 the	 kidney	than	 the	 liver.	 Taking	 together,	 these	 data	 suggest	 that	 the	

expression	of	mRNA‐Mts	in	the	liver	tissue	would	be	dependent	on	the	time	of	exposure,	

while	in	the	renal	tissue,	it	seems	to	be	dose‐dependent.	

Induction	 of	MTs	 (Piersma	 et	 al.,	 1993)	 is	 an	 alternative	mechanism	 by	which	

protection	 against	 Cd	 toxicity	 could	 be	 conferred.	 This	 low‐molecular	 weight	 protein	

binds	to	Cd,	limits	its	availability	to	cells	and	tissues	(King	et	al.,	1997),	and	plays	a	role	

in	 transport,	detoxification,	and	storage	 (Kang,	2006;	Thompson	and	Bannigan,	2008).	

After	 absorption,	 Cd	 is	 transported	 to	 the	 liver,	 bound	 to	 albumin	 (Nordberg	 et	 al.,	

1992),	where	it	induces	the	synthesis	of	MTs,	a	class	of	small	cysteine‐rich	heavy	metal	

binding	proteins.	Changes	within	the	 liver	 itself	 following	parenteral	administration	of	

CdCl2	 are	 dose‐	 and	 time‐dependent,	 ranging	 from	 moderate	 diffuse	 hepatocellular	

degeneration	through	to	multifocal	necrosis	(Sauer	et	al.,	1997).	Following	release	from	

the	 liver,	 MT‐bound	 Cd	 enters	 the	 plasma.	 MT‐bound	 Cd	 appears	 in	 the	 glomerular	

filtrate,	 from	where	 it	 is	 re‐absorbed	 intracellularly	by	 renal	 tubule	cells.	 In	 the	 latter,	

the	Cd	is	cleaved	from	the	MT	by	lysosomal	action,	and	Cd2+	ions	are	re‐excreted	into	the	

tubular	 fluid	 and	 then	 the	 Cd	 is	 eliminated	 in	 the	 urine.	 The	 ability	 of	 Cd	 to	 induce	

hepatic	and	renal	lesions	exacerbates	its	toxic	effects,	and	compounds	its	propensity	to	

accumulate	over	years	(Thompson	and	Bannigan,	2008).		

Several	 studies	 on	 fishes	 have	 shown	 2	metallothionein	 isoforms	 in	 salmonids,	

carp,	 gudgeon	 (Gobio	gobio),	 and	 other	 species,	whereas	 other	 fishes	 possess	 a	 single	

metallothionein	 isoform	 (Bonham	 et	 al.,	 1987;	 Bargelloni	 et	 al.,	 1999;	 Knapen	 et	 al.,	

2005).	Where	present,	the	2	metallothionein	isoforms	may	show	different	sensibility	to	

exogenous	inputs,	such	as	metals	and	oxidative	stress	(Zafarullah	et	al.,	1990;	Scudiero	

et	al.,	2001).	In	addition,	cold	stress	resulted	in	a	significantly	higher	induction	of	Mt‐1	

than	of	Mt‐2	(Hermesz	et	al.,	2001).	Sato	and	Kondoh	(2002)	reveal	that	both	Mt‐1	and	

Mt‐2	are	expressed	in	nearly	all	organs	of	the	body	and	are	related	to	metal	regulation	

and	detoxification	in	mammals.	Mt‐3	is	 localized	in	the	brain,	while	Mt‐4	is	specifically	
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expressed	 in	 epithelial	 cells	 of	 the	 skin	 (Quaife	 et	 al.,	 1994).	 For	 example,	 in	 avian	

species,	 Mt‐1	 had	 no	 correlation	with	 any	metal	 concentrations,	 and	Mt‐2	 expression	

was	 positively	 correlated	 with	 only	 Cu	 (Nam	 et	 al.,	 2007).	 All	 of	 these	 MT	 isoforms	

showed	different	functions	and	roles	in	their	subsequent	organs.		

Indeed,	it	is	well	known	that	teleost	MTs	also	include	some	isoforms,	for	instance,	

Rainbow	 trout	 (Oncorhynchus	mykiss),	 Zebrafish	 (Danio	 rerio),	 Carp	 (Cyprinus	 carpio),	

icefish	 (Chionodraco	 hamatus),	 tilapia	 (Oreochromis	mossambicus)	 and	 mediterranean	

killifish	 (Aphanius	 fasciatus)	 (Annabi	 et	 al.,	 2012;	Wu	 et	 al.,	 2012).	 Past	 studies	 found	

that	 MT	 isoforms	 of	 fish	 were	 like	 those	 of	 mammals	 and	 avian	 species	 in	 that	 they	

showed	 various	 functions	 and	 responses	 to	 different	 stresses.	 Generally	 regarded	 as	

unrelated	 to	 the	 reproductive	 system,	 MTs	 constitute	 a	 family	 of	 proteins	 whose	

expression	has	been	linked	to	exposure	to	heavy	metals	and,	secondarily,	to	other	forms	

of	 stress	 in	 essentially	 all	 animal	 species	 (Cajaraville	 et	 al.,	 2000,	 Bourdineaud	 et	 al.,	

2006,	 Sarkar	 et	 al.,	 2006).	 For	 example,	 in	 common	 Carp,	 both	 Mt‐1	 and	 ‐2	 levels	

increased	 with	 Cd	 concentrations	 in	 time‐	 and	 dose‐dependent	 manners,	 but	 the	

expression	of	Mt‐2	was	more	responsive	to	a	high	dose	of	Cd.	In	Zebrafish,	genes	of	mt2	

and	mt1	were	related	to	heavy	metal	detoxification	(Gonzalez	et	al.,	2006)	and	regulated	

by	 essential	 metals	 such	 as	 zinc	 and	 copper	 during	 development	 (Chen	 et	 al.,	 2004).	

However,	comparison	of	sequences	between	mt1	and	mt2	revealed	96.7%	identity	after	

gene	alignment	(Wu	et	al.,	2008b).	Previous	studies	showed	that	mt1	and	mt2	genes	are	

up‐regulated	after	Cd	exposure	 in	Zebrafish	 (Gonzalez	et	al.,	2006).	 In	addition,	 it	was	

suggested	that	mt1	has	an	important	physiological	role	in	gills	in	low‐level	contaminated	

water	(Gonzalez	et	al.,	2006).	Wu	et	al.	(2008b)	found	that	Zebrafish	mt2	mRNA	existed	

at	the	6h	post‐fertilization	(hpf)	stage,	and	had	rapidly	increased	at	the	24	hpf	stage.	It	

also	increased	gradually	with	further	larval	growth.	Both	MT	isoforms	were	measured	in	

the	 early	 stages	 of	 Zebrafish	 embryos.	 Furthermore,	 at	 72‐hpf	 Zebrafish	 larvae,	mt2	

signals	were	observed	 in	mitochondrion‐rich	 (MR)	cells,	 olfactory	pits,	 the	pronephric	

duct,	retinas,	and	the	ventricular	zone	upon	Cd	exposure	and	cold	shocks.	Additionally,	

MT	 isoforms	 showed	 different	 tissue‐specific	 expression	 in	 fish.	 Furthermore,	 our	

results	provide	the	first	evidence	of	gonadal	stress	of	Mediterranean	killifish	(Aphanius	

fasciatus)	on	background	of	high	increase	of	Mt‐2	mRNA	levels	in	testes	(some	100‐fold)	

in	Cd	polluted	sites	(Annabi	et	al.,	2012).	These	data	suggesting	that	this	probe	may	be	a	

good	marker	for	pollution	in	gonads.		
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This	 variety	 of	 cytotoxic	 agents	 including	 Cd	 have	 been	 shown	 to	 up‐regulate	

proteins	 especially	Heat	 shock	proteins	 (Hsps).	HSPs	 are	 a	 family	 of	 highly	 conserved	

molecular	 chaperones	 that	 aid	 in	 the	 proper	 folding,	 transport,	 and	 degradation	 of	

cellular	proteins.	The	70	kDa	Hsp	subfamily,	the	best	characterized	of	the	Hsps,	contains	

a	 highly	 stress‐inducible	 isoform	 encoded	 by	 the	hsp70	gene.	 For	 this	 purpose,	hsp70	

expression	 has	 been	 examined	 as	 a	 potential	 marker	 in	 toxicologic	 screening	 for	 a	

number	of	vertebrate	species	(Blechinger	et	al.,	2002).	

	

5.	Conclusion	and	perspectives	

The	levels	of	contamination	by	Cd	in	fish	are	of	considerable	interest	because	fish	

consumption	is	an	important	source	of	intake	Cd	for	the	general	population.	Most	of	the	

Cd	content	 in	 fish	or	other	 seafood	 is	highly	absorbable	 in	CdCl2	 form;	 in	humans,	 the	

efficiency	of	gastrointestinal	absorption	of	Cd	has	been	reported	to	be	approximately	3–

8%	of	 the	 ingested	 load.	 In	 the	 perspective	way,	 acute	 toxicological	 and	 physiological	

effects	to	aquatic	organisms	following	waterborne	Cd	exposure	can	be	altered	by	some	

others	parameters:	water	hardness	(Davies	et	al.,	1993),	water	concentration	of	calcium	

(Meyers,	 1999),	 Zinc	 (Brando‐Netro	 et	 al.,	 1995)	 and	 Selenium	 (Lin	 and	 Shiau,	 2007;	

Abdel‐Tawwab	 et	 al.,	 2007;	 Messaoudi	 et	 al.,	 2010a,	 2010b).	 While	 there	 have	 been	

reports	 on	 metal‐resistance	 in	 fish	 and	 on	 the	 underlying	 changes	 in	 metal	

accumulation,	 mechanisms	 underlying	 metal‐resistance	 have	 not	 been	 studied	 in	 fish	

populations	for	which	there	is	unequivocal	evidence	that	the	resistance	differences	are	

genetically	based.	Future	 investigations	should	be	designed	to	evaluate	the	association	

of	metabolic	rate	with	specific	physiological,	biochemical,	and	cellular	responses	as	well	

as	the	protective	effects	of	the	supplements.	
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